Непрерывный рост финансовых рынков диктует необходимость для его участников искать новые подходы к финансовому анализу для получения конкурентных преимуществ, в том числе за счет использования новых подходов в области вычислений. Квантовые вычисления могут быть использованы в качестве инструмента по получению данных преимуществ перед конкурентами. В частности моделирование Монте-Карло применяется широко в управлении финансовыми рисками, в то же время, требует значительных вычислительных ресурсов из-за использования большого количества сценариев, необходимых для получения более точного результата. Для оптимизации данного подхода применяются алгоритмы квантовой оценки амплитуды, которые ускоряют данный процесс, если использовать предварительно вычисленные распределения вероятностей для инициализации входных квантовых состояний. Но при отсутствии данных распределений в имеющихся подходах по данной тематике они генерируются численно с использованием классических вычислений, что полностью нивелирует преимущество квантового подхода. В данной статье предлагается решение указанной проблемы путём использования квантовых вычислений, в том числе для генерации распределений вероятностей. Была рассмотрена реализация квантовых схем для моделирования эволюции факторов риска во времени для движения капитала, процентных ставок и кредитных рисков, а также представлено объединение этих моделей с алгоритмами квантовой оценки амплитуды в качестве примера использования полученных алгоритмов для управления кредитными рисками. В завершении статьи проанализирована возможность использования полученных схем в финансовом анализе.
Одним из направлений разработки практичных постквантовых криптографических алгоритмов с открытым ключом является использование конечных алгебр в качестве их алгебраического носителя. Рассматриваются два подхода в этом направлении: 1) построение алгоритмов электронной цифровой подписи со скрытой группой на некоммутативных ассоциативных алгебр и 2) построение алгоритмов многомерной криптографии с использованием операции экспоненцирования в векторном конечном поле (коммутативной алгебре, являющейся конечным полем) для задания нелинейного отображения с секретной лазейкой. Первый подход включает разработку криптосхем двух типов: основанных на вычислительной трудности а) скрытой задачи дискретного логарифмирования и б) решения большой системы квадратных уравнений. Для второго подхода возникают проблемы обеспечения полной рандомизации цифровой подписи и задания некоммутативных ассоциативных алгебр большой размерности. Обсуждаются способы решения данных проблем. Показана важность исследования строения конечных некоммутативных алгебр с точки зрения декомпозиции на множество коммутативных подалгебр. Другое направление использования конечных алгебр для разработки криптографических алгоритмов с открытым ключом связано с существенным (в 10 и более раз) уменьшением размера открытого ключа в алгоритмах многомерной криптографии. В нем возникает проблема разработки формализованных параметризуемых унифицированных способов задания векторных конечных полей больших размерностей (от 5 до 130) с достаточно большим числом потенциально реализуемых типов и модификаций (до 2 500 и более), задаваемых различными наборами структурных констант, с помощью которых определяется операция умножения векторов. Предложены варианты указанных способов и топологий нелинейных отображений на векторных конечных полях различных размерностей. Показано, что использование отображений, задающих операцию экспоненцирования в векторных конечных полях, потенциально обеспечивает устранение основного недостатка известных алгоритмов многомерной криптографии, связанного с большим размером открытого ключа.
Эффективность экономики обусловлена оперативностью пресечения незаконного поведения хозяйствующих субъектов. В условиях ускорения деловой активности важной частью данного условия становится выявление рыночных сговоров на основе статистики электронных следов. В статье представлено решение этой задачи на основе кванто-теоретического подхода к моделированию принятия решений. А именно, когнитивные состояния субъектов представляются комплекснозначными векторами в пространстве, образованном базисными поведенческими альтернативами, тогда как вероятности принятия решений определяются проекциями этих состояний на соответствующие направления. Согласованность многостороннего поведения при этом соответствует запутанности порождающего когнитивного состояния, степень которой измеряется стандартными квантово-теоретическими метриками. Высокое значение метрики свидетельствует о вероятном наличии сговора между рассматриваемыми субъектами. Полученный таким образом метод выявления поведенческой координации апробирован на открытых данных об участии юридических лиц в государственных закупках за период с 2015 по 2020 годы, доступных на федеральном портале https://zakupki.gov.ru. Для использованной выборки построены квантовые модели примерно 80 тысяч уникальных пар и 10 миллионов уникальных троек ИНН. Достоверность выявления сговоров определялась сравнением подозреваемых с открытыми данными Федеральной антимонопольной службы https://br.fas.gov.ru. Согласно полученным функциям ошибок, половина известных парных сговоров выявляется с достоверностью более 50%, что сравнимо с методами выявления на основе классической корреляции и классической взаимной информации. В трёхстороннем случае, напротив, квантовая модель оказывается практически безальтернативной в силу ограниченности классических метрик двусторонней корреляцией. Половина таких сговоров выявляется с достоверностью 40%. Полученные результаты свидетельствуют об эффективности квантово-вероятностного подхода к моделированию многостороннего экономического поведения. Разработанные метрики могут быть использованы в качестве информативных признаков для аналитических систем и алгоритмов машинного обучения подобной направленности.
Спектральный анализ сигналов используется как один из основных методов исследования систем и объектов различной физической природы. В условиях статистической неопределенности сигналы подвергаются случайным изменениям и зашумлениям. Анализ таких сигналов приводит к необходимости оценивания спектральной плотности мощности (СПМ). На практике для её оценивания широко используется периодограммный метод. Основу цифровых алгоритмов, реализующих этот метод, составляет дискретное преобразование Фурье. В этих алгоритмах операции цифрового умножения являются массовыми операциями. Применение оконных функций ведет к увеличению числа этих операций. Операции умножения относятся к наиболее трудоемким операциям. Они являются доминирующим фактором при определении вычислительных возможностей алгоритма и определяют его мультипликативную сложность. В статье рассматривается задача снижения мультипликативной сложности вычисления периодограммной оценки СПМ с применением оконных функций. Задача решается на основе использования бинарно-знакового стохастического квантования для преобразования сигнала в цифровую форму. Такое двухуровневое квантование сигналов осуществляется без систематической погрешности. На основе теории дискретно-событийного моделирования, результат бинарно-знакового стохастического квантования во времени рассматривается как хронологическая последовательность существенных событий, определяемых сменой его значений. Использование дискретно-событийной модели для результата бинарно-знакового стохастического квантования обеспечило аналитическое вычисление операций интегрирования при переходе от аналоговой формы периодограммной оценки СПМ к математическим процедурам ее вычисления в дискретном виде. Эти процедуры стали основой для разработки цифрового алгоритма. Основными вычислительными операциями алгоритма являются арифметические операции сложения и вычитания. Уменьшение количества операций умножения снижает общую вычислительную трудоемкость оценивания СПМ. С целью исследования работы алгоритма были проведены численные эксперименты. Они осуществлялись на основе имитационного моделирования дискретно-событийной процедуры бинарно-знакового стохастического квантования. В качестве примера приведены результаты вычисления оценок СПМ с применением ряда наиболее известных оконных функций. Полученные результаты свидетельствуют, что использование разработанного алгоритма позволяет вычислять периодограммные оценки СПМ с высокой точностью и частотным разрешением в условиях присутствия аддитивного белого шума при низком отношении сигнал/шум. Практическая реализация алгоритма осуществлена в виде функционально самостоятельного программного модуля. Данный модуль может использоваться как отдельный компонент в составе комплексного метрологически значимого программного обеспечения для оперативного анализа частотного состава сложных сигналов.
В статье приводится описание особенностей квантовой инфокоммуникации, вводятся определения базовых понятий, рассматриваются исторические предпосылки, возможности применения и перспективы развития
В данной статье описываются основные концепции нейронных сетей и квантовых вычислений с целью показать наиболее общие свойства присущие им. Акцентируется внимание на проблеме параллельных вычислений как основного свойства, позволяющего добиться существенного увеличения вычислительной способности. И в заключение рассматривается задача симуляции квантовых вычислений на нейронных сетях с применением алгоритма квантового преобразования Фурье.
Задача определения ошибок квантования сигнала по уровню рассматривается с позиций теории сплайнов. Предлагается способ оценки этой ошибки на основе формул для энергетических спектров при приближении сигналов ступенчатыми В-сплайнами нулевой степени и полиномиальными сплайнами высоких степеней
Трудности алгоритмической имитации естественного мышления указывают на несовершенство используемых для этого форматов представления информации. В этом отношении перспективна кодировка информации кубитными состояниями квантовой теории, структура которых согласуется с крупными теориями когнитивной семантики. Представлено развитие этого подхода, связывающее кубитные состояния с цветом как самостоятельным носителем эмоционально-смысловых значений. Основой для этого стало геометрическое подобие цветовых тел и Гильбертова пространства кубитных состояний, позволившее установить между ними взаимооднозначное математическое отображение. Для этого использовано оригинальное разложение кубита по тройке неортогональных векторов, соответствующих красному, синему и зелёному цветам. Действительные коэффициенты такого разложения являются томограммами кубитного состояния по соответствующим направлениям, связанными с компонентами вектора Стокса операцией поворота. При этом композиционные соотношения чёрного, белого и шести основных цветов (красный, зелёный, синий, жёлтый, фиолетовый, голубой) выражаются аналогичными суперпозициями кубитных состояний. Чистые и смешанные цвета соответствуют чистым и смешанным состояниям на поверхности и внутри сферы Блоха, тогда как оттенки серого отображаются на вертикальный диаметр сферы. При этом светлость цвета соответствует вероятности базисного кубитного состояния «1», тогда как насыщенность цвета и цветовой тон кодируют когерентность и фазу кубитного состояния. Полученный результат открывает возможности для использования квантовой информатики в задачах семантического анализа данных, обработки изображений и создания природоподобных вычислительных архитектур.
В данной работе исследуется один из возможных вариантов гладкой аппроксимации вероятностных критериев в задачах стохастического программирования. Исследование проведено в приложении к задачам оптимизации функции вероятности и функции квантили для функционала потерь, зависящего от вектора управления и одномерной абсолютно непрерывной случайной величины. В данной работе исследуется один из возможных вариантов гладкой аппроксимации вероятностных критериев в задачах стохастического программирования. Исследование проведено в приложении к задачам оптимизации функции вероятности и функции квантили для функционала потерь, зависящего от вектора управления и одномерной абсолютно непрерывной случайной величины. Основная идея аппроксимации – замена разрывной функции Хевисайда в интегральном представлении функции вероятности на гладкую функцию, обладающую такими свойствами как непрерывность, гладкость, а также имеющую легко вычислимые производные. Примером такой функции является функция распределения случайной величины, распределенной по логистическому закону с нулевым средним и конечной дисперсией – сигмоида. Величина, обратно пропорциональная корню из дисперсии, при этом является параметром, обеспечивающим близость исходной функции и ее аппроксимации. Такая замена позволяет получить гладкое приближение функции вероятности, для которого легко могут быть найдены производные по вектору управления и иным параметрам задачи. В статье доказана сходимость аппроксимации функции вероятности, полученной при замене функции Хевисайда на сигмоидальную функцию, к исходной функции вероятности, и получена оценка погрешности такой аппроксимации. Далее получены приближенные выражения для производных функции вероятности по вектору управления и параметру функции, доказана их сходимость к истинным производным при выполнении ряда условий на функционал потерь. С помощью известных соотношений между производными функции вероятности и функции квантили получены приближенные выражения для производных функции квантили по вектору управления и уровню вероятности. Рассмотрены примеры, демонстрирующие возможность применения предложенных оценок к решению задач стохастического программирования с критериями в форме функции вероятности и функции квантили, в том числе в случае многомерной случайной величины.
В статье рассматривается смена парадигмы: от традиционных математических моделей теории управления к алгоритмической теории информатики А.Н. Колмогорова. Проводится сопоставление между идентифицируемой объектной информацией и ансамблевой (энтропийной) информацией по Шеннону. Предложенные алгоритмические модели основаны на соответствующих приближениях ЗПК, рассматриваемых как самоподобные рекурсивные структуры (фрактальный подход).
1 - 10 из 10 результатов