Весь выпуск
Искусственный интеллект, инженерия данных и знаний
-
Применение моделей машинного обучения обуславливает необходимость создания методов, направленных на повышение качественных показателей обработки информации. В большинстве практических случаев диапазоны значений целевых переменных и предикторов формируются под воздействием внешних и внутренних факторов. Такие явления, как дрейф концепций, приводят к тому, что модель со временем понижает показатели полноты и точности результатов. Целью работы является повышение качества анализа выборок и информационных последовательностей на основе многоуровневых моделей для задач классификации и регрессии. Предлагается двухуровневая архитектура обработки данных. На нижнем уровне происходит анализ поступающих на вход информационных потоков и последовательностей, осуществляется решение задач классификации или регрессии. На верхнем уровне выполняется разделения выборок на сегменты, определяются текущие свойства данных в подвыборках и назначаются наиболее подходящие по достигаемым качественным показателям модели нижнего уровня. Приведено формальное описание двухуровневой архитектуры. В целях повышения показателей качества решения задач классификации и регрессии производится предварительная обработка выборки данных, вычисляются качественные показатели моделей, определяются классификаторы, имеющие лучшие результаты. Предложенное решение позволяет реализовывать постоянно обучающиеся системы обработки данных. Оно направлено на снижение затрат на переобучение моделей в случае трансформации свойств данных. Проведены экспериментальные исследования на ряде наборов данных. Численные эксперименты показали, что предложенное решение позволяет повысить качественные показатели обработки. Модель может быть рассмотрена как совершенствование ансамблевых методов обработки информационных потоков и выборок данных. Обучение отдельного классификатора, а не группы сложных классификационных моделей дает возможность уменьшить вычислительные затраты.
-
Целью работы является разработка способа и алгоритма распознавания объектов окружающего пространства, качество работы которого не будет зависеть от числа типов объектов реального мира, которые он может распознавать. Для этого поставлены и решены задачи распознавания множества элементарных геометрических объектов (признаков-примитивов), определения отношений между ними и поиска соответствий между найденными признаками-примитивами и отношениями и заданными шаблонами–описаниями сложносоставных и простых объектов реального мира. Для распознавания элементарных геометрических фигур применена нейронная сеть свёрточного типа. Для её обучения использовались искусственно сгенерированные изображения с элементарными геометрическими фигурами (3D примитивами), которые располагались на сцене случайным образом с различными свойствами их поверхностей и текстурами. В результате обучения была получена нейронная сеть, способная распознавать объекты примитивы. Сформировано множество отношений, необходимое для распознавания объектов, которые могут быть представлены как составные из признаков-примитивов. В предложенном способе распознавания количество классов для поиска ограничивается набором признаков-примитивов. Проверка на фотографиях реальных объектов показала способность распознавать объекты реального мира в независимости от их типа (в случаях, когда возможны их разные модели и модификации) и материала изготовления, а также способность успешно решать задачи поиска объектов в условиях частичного перекрытия объектов и их ограниченной видимости и частичной деформации. В работе рассмотрен пример с распознаванием светильника уличного освещения. Пример показывает способность алгоритма не только выявлять объект на изображении, но и определять ориентацию положения его составляющих. Предложенное решение может быть использовано в задачах манипуляции объектами внешнего мира робототехническими системами.
-
Мозг считается одним из наиболее эффективных органов, контролирующих организм. Развитие технологий сделало возможным раннее и точное обнаружение опухолей головного мозга, что существенно влияет на их лечение. Применение искусственного интеллекта значительно возросло в области неврологии. В этом систематическом обзоре сравниваются последние методы глубокого обучения (DL), машинного обучения (ML) и гибридные методы для обнаружения рака мозга. В статье дается оценка 36 недавних статей, посвященных этим методам, с учетом наборов данных, методологии, используемых инструментов, достоинств и ограничений. Статьи содержат понятные графики и таблицы. Обнаружение опухолей головного мозга в значительной степени опирается на методы машинного обучения, такие как метод опорных векторов (SVM) и метод нечетких C-средних (FCM). Рекуррентные сверточные нейронные сети (RCNN), плотная сверточная нейронная сеть (DenseNet), сверточные нейронные сети (CNN), остаточная нейронная сеть (ResNet) и глубокие нейронные сети (DNN) — это методы DL, используемые для более эффективного обнаружения опухолей головного мозга. Методы DL и ML объединяются для разработки гибридных методов. Кроме того, приводится краткое описание различных этапов обработки изображений. Систематический обзор выявляет нерешенные проблемы и будущие цели для методов на основе DL и ML для обнаружения опухолей головного мозга. С помощью систематического обзора можно определить наиболее эффективный метод обнаружения опухолей головного мозга и использовать его для улучшения.
-
Нейросетевой подход к ИИ, получивший особенно широкое распространение в последнее десятилетие, обладает двумя существенными ограничениями – обучение моделей, как правило, требует очень большого количества образцов (не всегда доступных), а получающиеся модели не являются хорошо интерпретируемыми, что может снижать доверие к ним. Использование символьных знаний как основы коллаборативных процессов с одной стороны и распространение нейросетевого ИИ с другой, обусловливают необходимость синтеза нейросетевой и символьной парадигм применительно к созданию коллаборативных систем поддержки принятия решений. В статье представлены результаты аналитического обзора в области онтолого-ориентированного нейро-символического интеллекта применительно к решению задач обмена знаниями при коллаборативной поддержке принятия решений. А именно, в ходе обзора делается попытка ответить на два вопроса: 1. как символьные знания, представленные в виде онтологии, могут быть использованы для улучшения ИИ-агентов, действующих на основе нейронных сетей (передача знаний от человека к ИИ-агентам); 2. как символьные знания, представленные в виде онтологии, могут быть использованы для интерпретации решений, принимаемых ИИ-агентами и объяснения этих решений (передача знаний от ИИ-агента к человеку). В результате проведенного обзора сформулированы рекомендации по выбору методов внедрения символьных знаний в нейросетевые модели, а также выделены перспективные направления онтолого-ориентированных методов объяснения нейронных сетей.
Математическое моделирование и прикладная математика
-
Рассматривается модель олигополии с произвольным числом рациональных агентов, рефлексирующих по Курно или Штакельбергу, в условиях неполной информации для классического случая линейных функций издержек и спроса. Исследуется проблема достижения равновесия на основе математического моделирования процессов принятия агентами решений. Работы в этом направлении являются актуальными ввиду значимости понимания процессов, происходящих на реальных рынках, и сближения с ними теоретических моделей. В рамках динамической модели рефлексивного коллективного поведения каждый агент в каждый момент времени корректирует свой объем выпуска, делая шаг в направлении выпуска, максимизирующего его прибыль при ожидаемом выборе конкурентов. Допустимая величина шага задается диапазоном. В данной статье ставится и решается задача поиска диапазонов допустимых шагов агентов, которые формулируются как условия, гарантирующие сходимость динамики к равновесию. Новизну исследования определяет использование в качестве критерия сходимости динамики нормы матрицы перехода погрешностей от t -го к ( t +1)-му моменту времени. Показано, что динамика сходится, если норма меньше единицы, начиная с некоторого момента времени, и невыполнение этого критерия особенно проявляет себя при разнонаправленном выборе, когда одни агенты выбирают «большие» шаги движения к своим текущим целям, другие, наоборот, – «малые» шаги. Невыполнение критерия также усиливается с ростом рынка. Установлены общие условия на диапазоны сходимости динамики для произвольного числа агентов и предложен метод построения максимальных таких диапазонов, что также составляет новизну исследования. Представлены результаты решения указанных задач для частных случаев олигополии, которые являются наиболее широко распространенными на практике.
-
Рассматривается задача минимизации отклонений в траекториях свободного движения линейных систем с ограничениями по управлению. Предложен итеративный алгоритм для минимизации отклонений с использованием технологии системных грамианов и числа обусловленности матрицы собственных векторов устойчивой системы. Минимизация затрат на управление базируется на анализе сингулярного разложения грамиана затрат на управление с последующим формированием мажорантных и минорантных грамианных оценок. Минимизация отклонений в траекториях свободного движения систем осуществляется путем минимизации числа обусловленности матрицы собственных векторов матрицы состояния замкнутой системы, при этом матрица состояния с желаемыми спектрами собственных чисел и собственных векторов конструируется на основе обобщенного модального управления. В основе разработки итеративного алгоритма для минимизации отклонений в траекториях движения линейных систем при ненулевых начальных условиях с ограничениями по управлению лежит агрегированный показатель, позволяющий сформировать систему с минимальными отклонениями в траекториях ее свободного движения при минимальных затратах на управление. Данный показатель учитывает одновременно как оценку грамиана затрат на управление, так и число обусловленности матрицы собственных векторов устойчивой замкнутой системы. Минимизация агрегированного показателя позволяет обеспечить минимальные отклонения в траекториях свободного движения систем рассматриваемого класса. Алгоритм апробирован на примере системы с ограниченным входом, описывающей относительное движение двух спутников. Рассмотрено два случая минимизации отклонений. В первом случае минимизация отклонений в траекториях свободного движения спутников выполнена только за счет минимизации грамиана затрат на управление. Во втором случае минимизация отклонений осуществлена с применением разработанного алгоритма. Полученные результаты иллюстрируют эффективность предложенного алгоритма и уменьшение величины отклонений в траекториях относительного движения спутников.
-
Многие приложения цифровой обработки сигналов (DSP) и электронные гаджеты сегодня требуют цифровой фильтрации. Для получения быстрых и улучшенных результатов использовались различные алгоритмы оптимизации. Некоторые исследователи использовали Enhanced Slime Mold Algorithm для разработки 2D БИХ-фильтра. Однако было замечено, что данный алгоритм не обеспечил лучшей структуры решения и имел более низкую скорость сходимости. Чтобы решить эту проблему, для разработки 2D БИХ-фильтра используется алгоритм оптимизации Fused ESMA-Pelican Optimization Algorithm (FEPOA), который объединяет Pelican Optimization Algorithm с Enhanced Slime Mould Algorithm (ESMA). Сначала для инициализации популяции используется хаотический подход, который обеспечивает высококачественную популяцию с превосходным разнообразием, после чего позиция членов популяции заключается в идентификации и корректировке особи в граничной области поиска. После этого с помощью тактического подхода пеликана (Pelican Tactical Approach) изучается пространство поиска и исследовательской мощности FEPOA, потом случайным образом вычисляется пригодность, и обновляется лучшее решение, а затем оно перемещается к итерациям. Фазы FEPOA повторяются до тех пор, пока не завершится выполнение. Далее лучшее решение дает оптимальное решение, которое повышает скорость сходимости, точность сходимости и производительность FEPOA. Затем FEPOA реализуется в БИХ-фильтре для улучшения общей конструкции фильтра. Результаты, предоставленные FEPOA, достигают необходимой пригодности и наилучшего решения для 200 итераций, а амплитудная характеристика достигает максимального значения для = 2,4,8, а также время выполнения 3,0158 с, что намного быстрее, чем другие генетические алгоритмы, часто используемые для 2D БИХ-фильтров.
-
Приводятся сведения о новом подходе к приложению методов теории полумарковских процессов для решения прикладной задачи по оцениванию функциональной устойчивости элементов, входящих в состав информационной инфраструктуры, функционирующей в условиях воздействия множества компьютерных атак. Задача оценивания функциональной устойчивости сводится к задаче поиска функции живучести исследуемого элемента и определению ее экстремальных значений. Обосновывается актуальность исследования. В основе обоснования лежит предположение о том, что количественные методы исследования устойчивости технических систем, которыми оперирует теория надежности, не всегда могут быть применены для оценки живучести. Уточняются понятия «устойчивость» и «компьютерная атака». Формулируются вербальная и формальная постановки задач исследования. Новизна полученных результатов заключается в применении известных методов для решения практически значимой задачи в новой постановке с учетом ограничения на ресурс, выделенный для поддержания живучести исследуемого элемента, при условии принятия произвольных законов распределения случайных времен реализации компьютерных атак и времен восстановления функционала элемента. Приводятся рекомендации по формированию исходных данных, содержание укрупненных этапов моделирования и тестовый пример для демонстрации работоспособности модели. Приводятся результаты тестового моделирования в виде графиков функции живучести. Полученное приложение может быть использовано на практике для построения функции живучести при реализации до трех компьютерных атак, а также как инструмент для оценивания достоверности аналогичных статистических моделей. Ограничение объясняется прогрессивным возрастанием размерности аналитической модели и снижением возможности её содержательной интерпретации.