Систематическое исследование методов обнаружения опухолей головного мозга на основе искусственного интеллекта
Ключевые слова:
обработка изображений, машинное обучение, глубокое обучение, гибридные методыАннотация
Мозг считается одним из наиболее эффективных органов, контролирующих организм. Развитие технологий сделало возможным раннее и точное обнаружение опухолей головного мозга, что существенно влияет на их лечение. Применение искусственного интеллекта значительно возросло в области неврологии. В этом систематическом обзоре сравниваются последние методы глубокого обучения (DL), машинного обучения (ML) и гибридные методы для обнаружения рака мозга. В статье дается оценка 36 недавних статей, посвященных этим методам, с учетом наборов данных, методологии, используемых инструментов, достоинств и ограничений. Статьи содержат понятные графики и таблицы. Обнаружение опухолей головного мозга в значительной степени опирается на методы машинного обучения, такие как метод опорных векторов (SVM) и метод нечетких C-средних (FCM). Рекуррентные сверточные нейронные сети (RCNN), плотная сверточная нейронная сеть (DenseNet), сверточные нейронные сети (CNN), остаточная нейронная сеть (ResNet) и глубокие нейронные сети (DNN) — это методы DL, используемые для более эффективного обнаружения опухолей головного мозга. Методы DL и ML объединяются для разработки гибридных методов. Кроме того, приводится краткое описание различных этапов обработки изображений. Систематический обзор выявляет нерешенные проблемы и будущие цели для методов на основе DL и ML для обнаружения опухолей головного мозга. С помощью систематического обзора можно определить наиболее эффективный метод обнаружения опухолей головного мозга и использовать его для улучшения.
Литература
2. Rehman A., Naz S., Razzak M.I., Akram F., Imran M. A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits, Systems, and Signal Processing. 2020. vol. 39. pp. 757–775.
3. Shakeel P.M., Tobely T.E.E., Al-Feel H., Manogaran G., Baskar S. Neural network-based brain tumor detection using wireless infrared imaging sensor. IEEE Access. 2019. vol. 7. pp. 5577–5588.
4. Gumaei A., Hassan M.M., Hassan M.R., Alelaiwi A., Fortino G. A hybrid feature extraction method with regularised extreme learning machine for brain tumor classification. IEEE Access. 2019. vol. 7. pp. 36266–36273.
5. Sultan H.H., Salem N.M., Al-Atabany W. Multi-classification of brain tumor images using deep neural network. IEEE Access, 2019. vol. 7. pp. 69215–69225.
6. Zhou T., Ruan S., Guo Y., Canu S. A multi-modality fusion network based on attention mechanism for brain tumor segmentation. In 2020 IEEE 17th international symposium on biomedical imaging (ISBI) IEEE, 2020. pp. 377–380.
7. Jemimma T.A., Vetharaj Y.J. Watershed algorithm-based DAPP features for brain tumor segmentation and classification. 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT) IEEE, 2018. pp. 155–158.
8. Birare G., Chakkarwar V.A. Automated detection of brain tumor cells using support vector machine. In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT) IEEE, 2018. pp. 1–4.
9. Ge C., Gu I.Y.H., Jakola A.S., Yang J. Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification. IEEE Access, 2020. vol. 8. pp. 22560–22570.
10. Nazir M., Khan M.A., Saba T., Rehman A. Brain tumor detection from MRI images using multi-level wavelets. 2019 international conference on Computer and Information Sciences (ICCIS) IEEE, 2019. pp. 1–5.
11. Abd-Ellah M.K., Awad A.I., Khalaf A.A., Hamed H.F. Two-phase multi-model automatic brain tumor diagnosis system from magnetic resonance images using convolutional neural networks. EURASIP Journal on Image and Video Processing. 2018. vol. 2018. pp. 1-10. DOI: 10.1007/s10278-019-00276-2.
12. Sharma M., Purohit G.N., Mukherjee S. Information retrieves from brain MRI images for tumor detection using hybrid technique K-means and artificial neural network (KMANN). In Networking Communication and Data Knowledge Engineering: Springer Singapore. 2018. vol. 2. pp. 145–157.
13. Noreen N., Palaniappan S., Qayyum A., Ahmad I., Imran M., Shoaib M. A deep learning model based on concatenation approach for the diagnosis of brain tumor. IEEE Access, 2020. vol. 8. pp. 55135–55144.
14. Amin J., Sharif M., Raza M., Saba T., Sial R., Shad S.A. Brain tumor detection: a long short-term memory (LSTM)-based learning model. Neural Computing and Applications. 2020. vol. 32. pp. 15965–15973.
15. Swati Z.N.K., Zhao Q., Kabir M., Ali F., Ali Z., Ahmed S., Lu J. Content-based brain tumor retrieval for MR images using transfer learning. IEEE Access. 2019. vol. 7. pp. 17809–17822.
16. Mzoughi H., Njeh I., Wali A., Slima M.B., BenHamida A., Mhiri C., Mahfoudhe K.B. Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification. Journal of Digital Imaging. 2020. vol. 33. pp. 903–915.
17. Davis K.M., Ryan J.L., Aaron V.D., Sims J.B. PET and SPECT imaging of the brain: History, technical considerations, applications, and radiotracers. In Seminars in Ultrasound, CT and MRI, WB Saunders. 2020. vol. 41(6). pp. 521–529.
18. Russo C., Liu S., Di Ieva A. Spherical coordinates transformation preprocessing in Deep Convolution Neural Networks for brain tumor segmentation in MRI. Medical & Biological Engineering & Computing. 2022. vol. 60. pp. 121–134.
19. Taie S.A., Ghonaim W. CSO-based algorithm with support vector machine for brain tumor's disease diagnosis. 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) IEEE, 2017. pp. 183–187.
20. Kao P.Y., Ngo T., Zhang A., Chen J.W., Manjunath B.S. Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction. 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018. Granada, Spain: Springer International Publishing, 2019. vol. 4. pp. 128–141.
21. Usman K., Rajpoot K. Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Analysis and Applications. 2017. vol. 20. pp. 871–881.
22. Mathew A.R., Anto P.B. Tumor detection and classification of MRI brain image using wavelet transform and SVM. 2017 International Conference on signal processing and Communication (ICSPC) IEEE, 2017. pp. 75–78.
23. Iqbal S., Khan M.U.G., Saba T., Rehman A. Computer-assisted brain tumor type discrimination using magnetic resonance imaging features. Biomedical Engineering Letters. 2018. vol. 8(1). pp. 5–28.
24. Li Y., Shen L. Deep learning-based multimodal brain tumor diagnosis. Third International Workshop, BrainLes 2017, Held in Conjunction with MICCAI 2017. Quebec City, QC, Canada, Revised Selected Papers Springer International Publishing, 2018. vol. 3. pp. 149–158.
25. Van de Lindt T.N., Fast M.F., Van Kranen S.R., Nowee M.E., Jansen E.P.M., Van der Heide U.A., Sonke J.J. MRI-guided mid-position liver radiotherapy: validation of image processing and registration steps. Radiotherapy and Oncology. 2019. vol. 138. pp. 132–140.
26. Hagler Jr D.J., Hatton S., Cornejo M.D., Makowski C., Fair D.A., Dick A.S., Dale A.M. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage. 2019. vol. 202. pp. 116091.
27. Jia X.Z., Wang J., Sun H.Y., Zhang H., Liao W., Wang Z., Zang Y.F. RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data processing. Science Bulletin. 2019. vol. 64(14). pp. 953–954.
28. Alfaro-Almagro F., Jenkinson M., Bangerter N.K., Andersson J.L., Griffanti L., Douaud G., Smith S.M. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage. 2018. vol. 166. pp. 400–424.
29. Toğaçar M., Cömert Z., Ergen B. Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method. Expert Systems with Applications. 2020. vol. 149. pp. 113274.
30. Vijayalakshmi S., Kavitha K.R., Hariharan S. Segmentation, feature extraction and classification of brain tumor through MRI image. ICTACT J Image Video Process. 2021. vol. 12(1). pp. 2517–2524.
31. Vimal Kurup R., Sowmya V., Soman K.P. Effect of data preprocessing on brain tumor classification using capsuleNet. In ICICCT 2019–System Reliability, Quality Control, Safety, Maintenance and Management: Applications to Electrical, Electronics and Computer Science and Engineering Springer Singapore. 2020. pp. 110–119.
32. Tushar F.I., Alyafi B., Hasan M.K., Dahal L. Brain tissue segmentation using neuroNet with different preprocessing techniques. Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR) IEEE. 2019. pp. 223–227.
33. Khan A., Zubair S., Al Sabri M. An improved preprocessing machine learning approach for cross-sectional MRI imaging of demented older adults. In 2019 First International Conference of Intelligent Computing and Engineering (ICOICE) IEEE, 2019. pp. 1–7.
34. Fong J.X., Shapiai M.I., Tiew Y.Y., Batool U., Fauzi H. Bypassing MRI Preprocessing in Alzheimer's Disease Diagnosis using Deep Learning Detection Network. In 2020 16th IEEE International colloquium on signal processing & its applications (CSPA) IEEE. 2020. pp. 219–224.
35. Setyawan R., Almahfud M.A., Sari C.A., Rachmawanto E.H. MRI image segmentation using morphological enhancement and noise removal based on fuzzy C-means. 2018 5th international conference on information technology, computer, and electrical engineering (ICITACEE) IEEE, 2018. pp. 99–104.
36. Divyamary D., Gopika S., Pradeeba S., Bhuvaneswari M. Brain tumor detection from MRI images using Naive classifier. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) IEEE, 2020. pp. 620–622.
37. Chambers O., Milenkovic J., Tasic J.F. A preprocessing scheme for real-time registration of dynamic contrast-enhanced magnetic resonance images. Journal of Real-Time Image Processing. 2018. vol. 14(4). pp. 763–772.
38. Pugalenthi R., Rajakumar M.P., Ramya J., Rajinikanth V. Evaluation and classification of the brain tumor MRI using machine learning technique. Journal of Control Engineering and Applied Informatics. 2019. vol. 21(4). pp. 12–21.
39. Rundo L., Tangherloni A., Cazzaniga P., Nobile M.S., Russo G., Gilardi M.C., Militello C. A novel framework for MR image segmentation and quantification by using MedGA. Computer methods and programs in biomedicine. 2019. vol. 176. pp. 159–172.
40. Usha R., Perumal K. SVM classification of brain images from MRI scans using morphological transformation and GLCM texture features. International journal of computational systems engineering. 2019. vol. 5(1). pp. 18–23.
41. Russo C., Liu S., Di Ieva A. Impact of spherical coordinates transformation preprocessing in deep convolution neural networks for brain tumor segmentation and survival prediction. 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020. Lima, Peru: Springer International Publishing, 2020. pp. 295–306.
42. Thaha M.M., Kumar K.P.M., Murugan B.S., Dhanasekeran S., Vijayakarthick P., Selvi A.S. Brain tumor segmentation using convolutional neural networks in MRI images. Journal of medical systems. 2019. vol. 43. pp. 1–10.
43. Khan M.A., Lali I.U., Rehman A., Ishaq M., Sharif M., Saba T., Akram T. Brain tumor detection and classification: A framework of marker‐based watershed algorithm and multi-level priority features selection. Microscopy research and technique. 2019. vol. 82(6). pp. 909–922.
44. Sharif M.I., Li J.P., Khan M.A., Saleem M.A. Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recognition Letters. 2020. vol. 129. pp. 181–189.
45. Sharif M., Tanvir U., Munir E. U., Khan M.A., Yasmin M. Brain tumor segmentation and classification by improved binomial thresholding and multi-feature selection. Journal of ambient intelligence and humanised computing. 2018. pp. 1–20. DOI: 10.1007/s12652-018-1075-x.
46. Daimary D., Bora M.B., Amitab K., Kandar D. Brain tumor segmentation from MRI images using hybrid convolutional neural networks. Procedia Computer Science. 2020. vol. 167. pp. 2419–2428.
47. Zhou Z., He Z., Jia Y. AFPNet: A 3D fully convolutional neural network with atrous-convolution feature pyramid for brain tumor segmentation via MRI images. Neurocomputing. 2020. vol. 402. pp. 235–244.
48. Paul J., Sivarani T.S. Computer-aided diagnosis of brain tumor using novel classification techniques. Journal of Ambient Intelligence and Humanized Computing. 2021. vol. 12. pp. 7499–7509.
49. Assam M., Kanwal H., Farooq U., Shah S.K., Mehmood A., Choi G.S. An efficient classification of MRI brain images. IEEE Access. 2021. vol. 9. pp. 33313–33322.
50. Amin J., Sharif M., Raza M., Yasmin M. Detection of brain tumor based on features fusion and machine learning. Journal of Ambient Intelligence and Humanized Computing. 2018. pp. 1–17. DOI:10.1007/s12652-018-1092-9.
51. Maqsood S., Damasevicius R., Shah F.M. An efficient approach for the detection of brain tumor using fuzzy logic and U-NET CNN classification. 21st International Conference. Cagliari, Italy: Springer International Publishing, 2021. vol. 21. pp. 105–118.
52. Chen B., Zhang L., Chen H., Liang K., Chen X. A novel extended Kalman filter with support vector machine-based method for the automatic diagnosis and segmentation of brain tumors. Computer Methods and Programs in Biomedicine. 2021. vol. 200. pp. 105797.
53. Kumar D.M., Satyanarayana D., Prasad M.G. MRI brain tumor detection using optimal possibilistic fuzzy C-means clustering algorithm and adaptive k-nearest neighbor classifier. Journal of Ambient Intelligence and Humanized Computing. 2021. vol. 12(2). pp. 2867–2880.
54. Srinivasa Reddy A., Chenna Reddy P. MRI brain tumor segmentation and prediction using modified region growing and adaptive SVM. Soft Computing. 2021. vol. 25. pp. 4135–4148.
55. Sheela C.J.J., Suganthi G. Accurate MRI brain tumor segmentation based on rotating triangular section with fuzzy C-means optimisation. Sādhanā. 2021. vol. 46(4). DOI: 10.1007/s12046-021-01744-8.
56. Gokulalakshmi A., Karthik S., Karthikeyan N., Kavitha M.S. ICM-BTD: improved classification model for brain tumor diagnosis using discrete wavelet transform-based feature extraction and SVM classifier. Soft Computing. 2020. vol. 24. pp. 18599–18609.
57. Sharath Chander P., Soundarya J., Priyadharsini R. Brain tumor detection and classification using K-means clustering and SVM classifier. RITA 2018: Proceedings of the 6th International Conference on Robot Intelligence Technology and Applications Springer Singapore. 2020. 49–63.
58. Hussain A., Khunteta A. Semantic segmentation of brain tumor from MRI images and SVM classification using GLCM features. In 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA) IEEE. 2020. pp. 38–43.
59. Kumar D.M., Satyanarayana D., Prasad M.G. An improved Gabor wavelet transform and rough K-means clustering algorithm for MRI brain tumor image segmentation. Multimedia Tools and Applications. 2021. vol. 80. pp. 6939–6957.
60. Shahajad M., Gambhir D., Gandhi R. Features extraction for classification of brain tumor MRI images using support vector machine. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) IEEE. 2021. pp. 767–772.
61. Krishnakumar S., Manivannan K. Effective segmentation and classification of brain tumor using rough K means algorithm and multi-kernel SVM in MR images. Journal of Ambient Intelligence and Humanized Computing. 2021. vol. 12. pp. 6751–6760.
62. Mehrotra R., Ansari M.A., Agrawal R. A Novel Scheme for Detection & Feature Extraction of Brain Tumor by Magnetic Resonance Modality Using DWT & SVM. 2020 International Conference on Contemporary Computing and Applications (IC3A) IEEE. 2020. pp. 225–230.
63. Sarkar A., Maniruzzaman M., Ahsan M.S., Ahmad M., Kadir M.I., Islam S.T. Identification and classification of brain tumor from MRI with feature extraction by support vector machine. 2020 international conference for emerging technology (INCET) IEEE. 2020. pp. 1–4.
64. Anaya-Isaza A., Mera-Jiménez L. Data augmentation and transfer learning for brain tumor detection in magnetic resonance imaging. IEEE Access. 2022. vol. 10. pp. 23217–23233.
65. Musallam A.S., Sherif A.S., Hussein M.K. A new convolutional neural network architecture for automatic detection of brain tumors in magnetic resonance imaging images. IEEE Access. 2022. vol. 10. pp. 2775–2782.
66. More S.S., Mange M.A., Sankhe M.S., Sahu S.S. Convolutional Neural Network-based Brain Tumor Detection. 2021 5th International Conference on intelligent computing and control systems (ICICCS). IEEE, 2021. pp. 1532–1538.
67. Le N., Yamazaki K., Quach K.G., Truong D., Savvides M. A multi-task contextual atrous residual network for brain tumor detection & segmentation. In 2020 25th International Conference on Pattern Recognition (ICPR) IEEE. 2021. pp. 5943–5950.
68. Ma L., Zhang F. End-to-end predictive intelligence diagnosis in brain tumor using lightweight neural network. Applied Soft Computing. 2021. vol. 111. pp. 107666.
69. Kesav N., Jibukumar M.G. Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN. Journal of King Saud University-Computer and Information Sciences. 2022. vol. 34(8). pp. 6229–6242.
70. Ottom M.A., Rahman H.A., Dinov I.D. Znet: deep learning approach for 2D MRI brain tumor segmentation. IEEE Journal of Translational Engineering in Health and Medicine. 2022. vol. 10. pp. 1–8.
71. Qader S.M., Hassan B.A., Rashid T.A. An improved deep convolutional neural network by using hybrid optimisation algorithms to detect and classify brain tumor using augmented MRI images. Multimedia Tools and Applications. 2022. pp. 1–28.
72. Sharif M.I., Khan M.A., Alhussein M., Aurangzeb K., Raza M. A decision support system for multimodal brain tumor classification using deep learning. Complex & Intelligent Systems. 2021. pp. 1–14.
73. Chanu M.M., Thongam K. Computer-aided detection of brain tumor from magnetic resonance images using deep learning network. Journal of Ambient Intelligence and Humanized Computing. 2021. vol. 12. pp. 6911–6922.
74. Sethy P.K., Behera S.K. A data-constrained approach for brain tumor detection using fused deep features and SVM. Multimedia Tools and Applications. 2021. vol. 80(19). pp. 28745–28760.
75. Preethi S., Aishwarya P. An efficient wavelet-based image fusion for brain tumor detection and segmentation over PET and MRI image. Multimedia Tools and Applications. 2021. vol. 80(10). pp. 14789–14806.
76. Sharif M.I., Li J.P., Amin J., Sharif A. An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network. Complex & Intelligent Systems. 2021. vol. 7. pp. 2023–2036.
77. Montaha S., Azam S., Rafid A.R.H., Hasan M.Z., Karim A., Islam A. Time distributed-cnn-lstm: A hybrid approach combining CNN and lstm to classify brain tumor on 3d MRI scans performing ablation study. IEEE Access. 2022. vol. 10. pp. 60039–60059.
78. Deb D., Roy S. Brain tumor detection based on hybrid deep neural network in MRI by adaptive squirrel search optimisation. Multimedia tools and applications. 2021. vol. 80. pp. 2621–2645.
79. Pitchai R., Supraja P., Victoria A.H., Madhavi M. Brain tumor segmentation using deep learning and fuzzy K-means clustering for magnetic resonance images. Neural Processing Letters. 2021. vol. 53. pp. 2519–2532.
80. Deepak S., Ameer P.M. Automated categorisation of brain tumor from MRI using CNN features and SVM. Journal of Ambient Intelligence and Humanized Computing. 2021. vol. 12. pp. 8357–8369.
81. Ayadi W., Charfi I., Elhamzi W., Atri M. Brain tumor classification based on hybrid approach. The Visual Computer. 2022. vol. 38(1). pp. 107–117.
82. Narmatha C., Eljack S.M., Tuka A.A.R.M., Manimurugan S., Mustafa M. A hybrid fuzzy brain-storm optimisation algorithm for the classification of brain tumor MRI images. Journal of ambient intelligence and humanised computing. 2020. 1–9.
83. Kalaiselvi T., Kumarashankar P., Sriramakrishnan P. Three-phase automatic brain tumor diagnosis system using patches based updated run length region growing technique. Journal of digital imaging. 2020. vol. 33. pp. 465–479.
84. Çinar A., Yildirim M. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture: medical hypotheses. 2020. vol. 139. pp. 109684.
85. Raja P.S. Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybernetics and Biomedical Engineering. 2020. vol. 40(1). pp. 440–453.
86. Hashemzehi R., Mahdavi S.J.S., Kheirabadi M., Kamel S.R. Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. biocybernetics and biomedical engineering. 2020. vol. 40(3). pp. 1225–1232.
87. Agrawal S., Samantaray L., Panda R., Dora L. A new hybrid adaptive cuckoo search-squirrel search algorithm for brain MR image analysis. In Hybrid Machine Intelligence for Medical Image Analysis. Singapore: Springer Singapore. 2019. pp. 85–117.
88. Aboelenein N.M., Songhao P., Koubaa A., Noor A., Afifi A. HTTU-Net: Hybrid Two Track U-Net for automatic brain tumor segmentation. IEEE Access. 2020. vol. 8. pp. 101406–101415.
Опубликован
Как цитировать
Раздел
Copyright (c) Sanjeet Kumar, Unknown, Unknown
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).