Весь выпуск
Робототехника, автоматизация и системы управления
-
Транспортная система является одной из важнейших частей экономики страны. В то же время, рост интенсивности транспортного потока оказывает существенное отрицательное влияние на экономические показатели отрасли. Одним из способов повышения эффективности использования транспортной инфраструктуры является управление транспортными потоками. Решение задачи эффективного управления транспортными потоками в настоящее время часто осуществляется путем применения систем управления сигналами светофоров на регулируемых перекрёстках. В связи с развитием и постепенным внедрением самоорганизующихся автомобильных сетей, позволяющих обмениваться информацией между транспортными средствами и объектами инфраструктуры, а также развитием автономных транспортных средств другим перспективным подходом к решению рассматриваемой задачи является управление траекторией движения беспилотных транспортных средств. Как следствие, становится возможной постановка задачи совместного управления траекториями движения транспортных средств и сигналами светофоров для повышения пропускной способности перекрестков, снижения потребляемого топлива и времени движения. В данной работе представлен метод управления транспортным потоком на перекрестке, заключающийся в совместном управлении сигналами светофоров и траекториями движения подключенных/автономных транспортных средств. Разработанный метод сочетает метод адаптивного управления сигналами светофоров, основанный на детерминированной модели прогнозирования движения транспортных средств, и двухэтапный алгоритм построения траектории движения транспортных средств. Целевая функция оптимизации, используемая для построения оптимальных траекторий, учитывает расход топлива, время движения по дорожной полосе и время ожидания на перекрестке. Экспериментальные исследования разработанного метода проведены в системе микроскопического моделирования движения транспортных средств SUMO с использованием трех сценариев моделирования, включающих синтетические сценарии и сценарий движения в реальной городской среде. Результаты экспериментальных исследований подтверждают эффективность разработанного метода по критериям потребления топлива, времени движения и времени ожидания по сравнению с методом адаптивного управления сигналами светофоров.
-
Снижение эффективности грузопассажирских перевозок в условиях городской инфраструктуры определяется ростом числа автомобилей, опережающим развитие сети дорог. Моделирование неравномерности потоков во времени (час пик) выявило ключевое значение интервала движения транспортных средств как фактора борьбы с эффектом аккумуляции при снижении средней скорости в условиях загруженности дорог. Снижение эффективного времени реакции водителя, определяющего предельную дистанцию между транспортными средствами, требует минимизации влияния человеческого фактора. Для автоматизации процесса (реализации беспилотного управления транспортом) необходимо обеспечить эффективный обмен навигационной и маршрутной информацией между участниками движения. Совокупности требований к системе информационного обмена лучше всего отвечает коммуникационно-навигационная система (КНС) на базе принципов широковещательной радиосвязи. Ее применение позволяет одновременно повысить и безопасность, и эффективность дорожного движения. Рост безопасности обеспечивается за счет повышения предсказуемости действий соседних участников движения. Для увеличения эффективности в зоне высокой плотности потоков формируются Центры управления транспортом (ЦУТ). Распределенные сети приемо-передающих станций ЦУТ образуют локальную систему позиционирования на принципах трилатерации. Алгоритмы верификации корректности работы бортовых навигационных средств и автоматического разрешения коммуникационных конфликтов обеспечивают высокую надежность функционирования КНС. Отказ от принципов абонентской радиосвязи обеспечивает ее работоспособность даже в условиях очень высокой плотности ТС (несколько тысяч на квадратный километр). В сочетании с передовыми технологиями организации дорожного движения (реализации решетки транспортных магистралей и режима «тотальной зеленой волны») КНС и ЦУТ способны обеспечить среднюю скорость в городских условиях более 45 км/ч. Совокупная экономия затрат на последнюю милю доставки в результате их внедрения оценивается на уровне единиц процентов ВВП даже без учета социальных и экологических эффектов только за счет снижения аварийности и сокращения числа пробок.
-
Использование пестицидов и загрязнение окружающей среды в садах можно значительно снизить, сочетая опрыскивание с переменной скоростью с пропорциональными системами управления. В настоящее время фермеры могут использовать опрыскивание с переменной скоростью для применения средств от сорняков только там, где они необходимы, что обеспечивает экологически чистые и экономичные химические средства для защиты растений. Кроме того, серьезной проблемой является ограничение использования пестицидов в качестве средств защиты растений (СЗР) при сохранении надлежащего отложения растительного покрова. Кроме того, автоматические опрыскиватели, которые регулируют норму внесения в соответствии с размером и формой садовых насаждений, показали значительный потенциал для сокращения использования пестицидов. Для автоматического распыления в существующем исследовании использовались искусственная нейронная сеть (ИНС) и машинное обучение. Кроме того, эффективность опрыскивания можно повысить за счет снижения потерь при распылении из-за осаждения на грунт и нецелевого сноса. Таким образом, это исследование включает в себя тщательное изучение существующих методов опрыскивания с переменной скоростью в садах. Помимо предоставления примеров их прогнозов и краткого рассмотрения влияния на параметры опрыскивания, в нем также представлены различные альтернативы предотвращению чрезмерного использования пестицидов и исследуются их преимущества и недостатки.
-
При решении задачи оптимального управления как прямыми, так и непрямыми подходами основной прием состоит в переводе задачи оптимального управления из класса бесконечномерной оптимизации в конечномерную. Однако при всех этих подходах в результате получается разомкнутое программное управление, чувствительное к неопределенностям, и для реализации которого в реальном объекте необходимо построить систему стабилизации. Введение системы стабилизации изменяет динамику объекта, а значит, оптимальное управление и оптимальная траектория должны рассчитываться для объекта уже с учетом системы стабилизации. В итоге получается, что изначальная задача оптимального управления является сложной, и часто возможность ее решения крайне зависима от типа объекта и функционала, а в случае усложнения объекта за счет введения системы стабилизации сложность задачи значительно увеличивается и применение классических подходов решения задачи оптимального управления оказывается трудоемким или невозможным. В настоящей работе предложен метод синтезированного оптимального управления, который реализует обозначенную логику разработки систем оптимального управления, преодолевая вычислительную сложность поставленной задачи за счет применения современных методов машинного обучения на основе символьной регрессии и эволюционных алгоритмов оптимизации. Согласно подходу сначала строится система стабилизации объекта относительно некоторой точки, а далее положение этой точки равновесия становится параметром управления. Таким образом, удается перевести задачу бесконечномерной оптимизации в задачу конечномерной оптимизации, а именно оптимального расположения точек равновесия. Эффективность подхода продемонстрирована на решении задачи оптимального управления мобильным роботом.
Искусственный интеллект, инженерия данных и знаний
-
Получение из растрового изображения объектов в векторном виде необходимо во многих сферах. Существующие методы векторизации спутниковых снимков не обеспечивают нужной точности автоматизации. В данной области требуется применять ручной труд, но объём поступающей информации зачастую превышает скорость обработки. Поэтому необходимы новые подходы для решения подобного рода задач. В статье предложен метод векторизации объектов на снимках с использованием разложения изображения на топологические особенности, который разбивает изображение на отдельные связанные структуры и при дальнейшей работе опирается уже на них. В результате уже на этом этапе изображение разбивается на древовидную структуру. Данный метод уникален по своему образу работы и в корне отличается от традиционных способов векторизации снимков. Большинство методов работает с помощью пороговой бинаризации, и основной задачей для них становится подбор порогового коэффициента. Главной проблемой в таком случае становится ситуация, когда на изображении имеется несколько объектов, для которых необходим разный порог. Метод отходит от непосредственной работы с яркостной характеристикой в сторону анализа топологической структуры каждого объекта. Предлагаемый метод имеет корректное математическое обоснование, в основе которого лежит алгебраическая топология. На основе метода разработана геоинформационная технология для автоматической векторизации растровых снимков с целью поиска находящихся на нем объектов. Тестирование проводилось на спутниковых снимках с разных масштабов. Разработанный метод сравнивался со специальным инструментом для векторизации R2V и превзошел его по средней точности. Средний процент у автоматической векторизации предложенного метода составил 81%, а у полуавтоматического векторизующего модуля R2V – 73%.
-
В работе рассмотрено применение модели машинного обучения для определения оптимальной стратегии пользователя для победы в аукционе на покупку товара/услуги с использованием задачи наилучшего выбора. Применение модели наилучшего выбора позволяет участникам аукциона определить стратегию, которая минимизирует ожидаемую стоимость товара/услуги на основе функции распределения его цен. На практике наиболее часто цены на товар, услугу или ресурс имеют распределение, близкое к нормальному или к смеси нормальных распределений. Возникают задачи определения числа компонент смеси нормальных распределений и определения ее параметров. Одним из распространенных методов для определения числа компонент смеси распределений является BIC критерий. Оценить неизвестные параметры смеси нормальных распределений при фиксированном числе компонент можно с помощью EM-алгоритма, однако временные затраты на оценку параметров данным методом возрастают как при увеличении объёма выборки, так и при увеличении числа рассматриваемых компонент смеси. Разработана классификационная модель машинного обучения на основе сверточной нейронной сети для автоматизации и ускорения процесса определения числа компонент смеси нормальных распределений и оценки ее параметров. Приведены результаты тренировки и тестирования модели машинного обучения. Проведено сравнение применения разработанной модели с другими алгоритмами, не использующими нейронные сети. Результаты показывают, что предложенная модель позволяет эффективно определить наиболее подходящее число компонент для смеси нормальных распределений и уменьшает скорость вычисления параметров распределения при применении EM-алгоритма. Модель машинного обучения может быть применена в различных областях, например, в финансовом анализе или для определения оптимальной стратегии в аукционе на аренду вычислительного ресурса.
-
В статье рассматривается задача формирования цифровой тени процесса перемещения человека. Проведен анализ предметной области, который показал необходимость формализации процесса создания цифровых теней для имитации движений человека в виртуальном пространстве, тестировании программно-аппаратных комплексов, функционирующих на основе действий человека, а также в различных системах опорно-двигательной реабилитации. Выявлено, что среди существующих подходов к захвату движений человека нельзя выделить универсальный и стабильно работающий при различных условиях внешней среды. Разработан метод формирования цифровой тени на основе комбинирования и синхронизации данных из трех систем захвата движений (трекеры виртуальной реальности, костюм motion capture и камеры с использованием технологий компьютерного зрения). Объединение перечисленных систем позволяет получить комплексную оценку положения и состояния человека независимо от условий внешней среды (электромагнитные помехи, освещенность). Для реализации предложенного метода проведена формализация цифровой тени процесса перемещения человека, включающая описание механизмов сбора и обработки данных от различных систем захвата движений, а также этапы объединения, фильтрации и синхронизации данных. Научная новизна метода заключается в формализации процесса сбора данных о перемещении человека, объединении и синхронизации аппаратного обеспечения используемых систем захвата движений для создания цифровых теней процесса перемещения человека. Полученные теоретические результаты будут использоваться в качестве основы для программной абстракции цифровой тени в информационных системах для решения задач тестирования, имитации человека и моделирования его реакции на внешние раздражители за счет обобщения собранных массивов данных о его перемещении.
-
В области рекрутинга и менеджмента персонала существует задача автоматизации процесса оценки характеристик человеческого капитала, учитывающего в том числе особенности личности сотрудника. Статья посвящена вопросу выявления характеристик индивидуального человеческого капитала, имеющих наибольший вклад в некоторые показатели эффективности сотрудника организации, таких как карьерный успех, по данным их самоотчетов о профессиональных навыках и ответов на вопросы–утверждения о различных психологических аспектах личности. Предлагается общая структура опросного инструментария, опирающегося на самоотчеты сотрудников, а также формализация предполагаемых методов анализа таких вопросов. Для выявления групп респондентов, обладающих схожими профессиональными навыками, было предложено использовать кластерный анализ, который позволяет сохранить сложную структуру их взаимосвязи. Для выявления личностных особенностей сотрудников из вопросов–утверждений предлагается формировать шкалы и посредством методов современной теории тестирования получить оценки латентной переменной, отражающей личностные особенности. На завершающем этапе исследования предполагается использование аппарата регрессии для оценивания взаимосвязи выявленных кластеров и латентных характеристик личности с тем или иным индикатором успешности сотрудника. Предлагаемый подход представляет собой структуру пилотного исследования, позволяющего выделить характеристики человеческого капитала (профессиональные навыки и особенности личности), обладающие наибольшим вкладом в показатели эффективности сотрудника или организации, и направлен на снижение трудозатрат на последующих этапах более подробного и прицельного исследования. Возможности предложенного подхода продемонстрированы на примере данных, собранных среди государственных гражданских служащих различных структур Российской Федерации. В качестве индикатора эффективности сотрудника рассматривается наиболее доступный к наблюдению аспект карьерного успеха, выраженный фактом наличия руководящей должности.