Весь выпуск
Математическое моделирование и прикладная математика
-
Проанализированы предложенные ранее исследователями рекомендации по применению методов многомерного оценивания объектов. Отмечена слабая обоснованность этих рекомендаций, следующая из поверхностной систематизации методов многомерного оценивания. Рекомендации ориентированы не на классы задач многомерного оценивания объектов, а на различные области человеческой деятельности. Однако в каждой сфере человеческой деятельности имеет место широкий спектр задач оценивания объектов различной природы. В связи с этим признана актуальность более тщательной систематизации методов многомерного оценивания. Учитывая разноплановость методов многомерного оценивания, решено ограничиться систематизацией методов, применяющих оценочные функции, и на этой основе предложить общие рекомендации по их применению. Обзор методов многомерного оценивания с единой позиции потребовал уточнения применяемой в них терминологии. На основе формальной модели установлены отношения между понятиями «предпочтение», «критерий» и «показатель». Для выделения методов, применяющих оценочные функции, введено понятие целевого значения показателя. Относительно его расположения на шкале показателя введены понятия идеальной и реальной целей. Соответствующие этим целям критерии разделены на целевые и ограничительные. С применением предложенной терминологии проанализированы наиболее известные методы многомерного оценивания. Из них выделена группа методов, применяющих оценочные функции. Рассмотрены варианты оценочных функций, создаваемых на основе критерия и постулатов теории ценности и полезности. На основе сходства областей определения и значений различных оценочных функций установлена взаимосвязь между ними. Относительно целевого значения показателя они разделены на функции достижения цели и функции отклонения от цели. Показана взаимная дополнительность этих функций. Выделена группа функций отклонения от цели, которая позволяет упорядочивать объекты раздельно по штрафам и поощрениям относительно достижения реальной цели. Для отношения соответствия введено понятие нормы. На примере медицинских анализов показано практическое применение функций отклонения от нормы с применением как минимаксной, так и средневзвешенной обобщающей функции для установления рейтинга на множестве объектов. Выявленное в процессе исследования сходство и различие оценочных функций положено в основу классификации использующих их методов многомерного оценивания. Различие оценочных функций по трудоемкости их создания отражено в предложенной методике их применения.
-
Утверждается, что первостепенное значение в решении задачи классификации занимают: нахождение условий разбиения генеральной совокупности на классы, определение качества такого расслоения и верификация модели классификатора. Рассмотрена математическая модель нерандомизированного классификатора признаков, полученных без учителя, когда априори не задается число классов, а лишь устанавливается его верхняя граница. Математическая модель приведена в виде постановки минимаксной условной экстремальной задачи и представляет собой задачу поиска матрицы принадлежности объектов к какому-либо классу. В основе разработки классификатора признаков находится синтез двумерной плотности вероятностей в пространстве координат: классы – объекты. С помощью обобщенных функций вероятностная задача поиска минимума Байесовского риска сведена к детерминированной задаче на множестве нерандомизированных классификаторов. Вместе с тем использование специально введенных ограничений фиксирует нерандомизированные правила принятия решений и погружает целочисленную задачу нелинейного программирования в общую непрерывную нелинейную задачу. Для корректного синтеза классификатора необходимы дисперсионная кривая изотропной выборки и характеристики качества классификации в зависимости от суммарной внутриклассовой и межклассовой дисперсии. Задача классификации может быть интерпретирована как частная задача теории катастроф. В условиях ограниченных исходных данных найден минимаксный функционал, отражающий качество классификации при квадратичной функции потерь. Математическая модель представлена в виде задачи целочисленного нелинейного программирования и приведена с помощью полиномиальных ограничений к виду общей задачи нелинейного непрерывного программирования. Найдены необходимые условия расслоения на классы. Эти условия могут быть использованы как достаточные при проверке гипотезы о существовании классов.
-
Рассматривается задача нахождения минимального по размеру множества атрибутов, используемых для распределения многомерных объектов по классам, например на основе деревьев решений. Задача имеет важное значение при разработке высокопроизводительных и точных классифицирующих систем. Приведен краткий сравнительный обзор известных методов. Задача сформулирована как отыскание минимального (взвешенного) покрытия на различающей 0,1-матрице, которая служит для описания возможности атрибутов разделять пары объектов из разных классов. Приведено описание способа построения различающей матрицы. Сформулированы и решены на основе общего разрешающего принципа групповых резолюций следующие варианты задачи: отыскание минимального по размеру множества атрибутов на заданном входном наборе данных; отыскание минимального по размеру множества атрибутов с минимальным суммарным весом атрибутов (в качестве весов атрибутов можно использовать величины, определяемые на основе известных алгоритмов, например на основе метода RELIEF); нахождение оптимального взвешенного нечеткого покрытия для случая, когда элементы различающей матрицы принимают значения в диапазоне [0,1]; определение статистически оптимального покрытия различающей матрицы (например, для входных наборов данных больших размеров). Статистически оптимальный алгоритм позволяет ограничить время решения полиномом от размеров задачи и плотности единичных элементов в различающей матрице и при этом обеспечить близкую к единице вероятность отыскания точного решения. Таким образом, предлагается общий подход к определению минимального по размеру множества атрибутов, учитывающий различные особенности в постановке задачи, что отличает данный подход от известных. Изложение содержит многочисленные иллюстрации с целью придать ему максимальную ясность. Ряд теоретических положений, приводимых в статье, основывается на ранее опубликованных результатах. В заключительной части представлены результаты экспериментов, а также сведения о сокращении размерности задачи о покрытии для больших массивов данных. Отмечаются некоторые перспективные направления изложенного подхода, включая работу с неполными и качественными данными, интегрировании управляющей модели в систему классификации данных.
Искусственный интеллект, инженерия данных и знаний
-
Представлено сравнение дискретных скрытых марковских моделей и свёрточных нейронных сетей для классификации изображений. После разбивки изображений на части целесообразно получить векторы, которые представляют локальные визуальные структуры, одновременно определяющие изображения глобально через пространственную последовательность. С использованием методов кластеризации создается алфавит из указанных векторов, а затем конструируются последовательности символов, которые описывают статистические модели, соответствующие классам изображений. Скрытые марковские модели в сочетании с методами квантования могут обрабатывать шум и искажения в наблюдениях для решения проблем компьютерного зрения, таких как классификация изображений с изменением освещения и перспективы. Протестированы архитектуры, основанные на трех, шести и девяти скрытых состояниях, в пользу скорости обнаружения и низкого использования памяти. Также были протестированы два типа ансамблевых моделей. Точность предлагаемого метода была оценена с помощью общедоступных данных; полученные результаты оказались сравнимы с известными оценками при использовании тонко настроенных свёрточных нейронных сетей, но требовали значительно меньших вычислительных ресурсов. Результат представляет интерес при разработке мобильных роботов с вычислительными устройствами, имеющими ограниченное время автономной работы, но требующими способности обнаруживать и добавлять новые объекты в свои системы классификации.
-
В условиях текущей четвертой промышленной революции вместе с развитием компьютерных технологий увеличивается и количество текстовых данных. Следует понимать природу и характеристики этих данных, чтобы применять необходимые методологии. Автоматическая обработка текста экономит время и ресурсы существующих систем. Классификация текста является одним из основных приложений обработки естественного языка с использованием таких методов, как анализ тональности текста, разметка данных и так далее. В частности, недавние достижения в области глубокого обучения показывают, что эти методы хорошо подходят для классификации документов. Они продемонстрировали свою эффективность в классификации англоязычных текстов. Однако по проблеме классификации вьетнамских текстов существует не так много исследований. Последние созданные модели глубокого обучения для классификации вьетнамского текста показали заметные улучшения, но тем не менее этого недостаточно. Предлагается автоматическая система на основе длинной краткосрочной памяти и Word2Vec моделей, которая повышает точность классификации текстов. Предлагаемая модель продемонстрировала более высокие результаты классификации вьетнамских текстов по сравнению с другими традиционными методами. При оценке данных вьетнамского текста предлагаемая модель показывает точность классификации более 90%, поэтому может быть использована в реальном приложении.
Цифровые информационно-телекоммуникационные технологии
-
Высокая спектральная эффективность сигналов с непрерывной фазовой модуляцией определила их известность и активное применение в различных радиотехнических проектах. Уникальность свойств таких сигналов связана с сохранением непрерывности их фазы при смене информационных посылок на длительности символа. Вместе с тем до недавнего времени из всего широкого класса сигналов с непрерывной фазовой модуляцией наибольшее распространение получили различные вариации так называемых сигналов частотной модуляцией с минимальным сдвигом. Однако это далеко не единственные представители класса сигналов с непрерывной фазовой модуляцией, обладающие свойством высокой спектральной компактности. Исследованы не менее интересные сигналы этого класса, формируемые посредством двойной фазовой модуляции. Представлены аналитические выражения их синтеза, обоснована их принадлежность к классу сигналов с непрерывной фазовой модуляцией. Также исследованы временные свойства фазовой функции, рекомендованной МСЭ-R SM.328-11 для синтеза сигналов с непрерывной фазовой модуляцией, приведены временные и частотные фрагменты сигналов с минимальным сдвигом в сравнении сигналами с двоичной фазовой манипуляцией. Представлены этапы аналитического вывода модели помехоустойчивости сигналов с непрерывной фазовой модуляцией по показателю вероятности битовой ошибки на основе эмпирического подхода. Показана общность полученной модели с известным выражением для сигналов с минимальным сдвигом путем исследования разностной функции ошибки аппроксимации (ошибка порядка 10 -3 ), что позволило получить более компактное представление разработанной модели применительно к сигналам с двойной фазовой модуляцией. Доказано, что такие сигналы обладают более высокими свойствами помехоустойчивости по отношению к сигналам с минимальным сдвигом (порядка 0,5 дБ по уровню ошибки 10 -5 ). Указанный результат получен на основе исследования функций различия, определяемых разностью между сигнальными символами соответствующих информационным значениям «1» и «0». Определены направления дальнейшего исследования.
-
Анализ сетей разнообразной природы, которыми являются сети цитирования, а также социальные или информационно-коммуникационные сети, включает изучение топологических свойств, позволяющих оценивать взаимосвязи между узлами сети и различные характеристики, такие как плотность и диаметр сети, связанные подгруппы узлов и тому подобное. Для этого сеть представляется в виде графа – совокупности вершин и ребер между ними. Одной из важнейших задач анализа сетей является оценивание значимости узла (или в терминах теории графов – вершины). Для этого разработаны различные меры центральности, позволяющие оценить степень значимости вершин сетевого графа в структуре рассматриваемой сети. Существующее многообразие мер центральности порождает проблему выбора той, которая наиболее полно описывает значимость центральность узла. Актуальность работы обусловлена необходимостью анализа мер центральности для определения значимости вершин, что является одной из основных задач изучения сетей (графов) в практических приложениях. Проведенное исследование позволило с использованием метода главных компонент среди известных мер центральности выявить коллинеарные меры, которые в дальнейшем можно исключать из рассмотрения. Это позволяет уменьшить вычислительную сложность расчетов, что особенно важно для сетей с большим числом узлов, и повысить достоверность интерпретации получаемых результатов при оценивании значимости узла в рамках анализируемой сети при решении практических задач. Выявлены закономерности представления различных мер центральности в пространстве главных компонент, что позволяет классифицировать их с точки зрения близости образов узлов сети, формируемых в определяемом применяемыми мерами центральности пространстве.
-
Централизованно-зарезервированный доступ к среде в сетях цифровой радиосвязи семейства стандартов IEEE 802.11 является альтернативой случайному множественному доступу к среде типа CSMA/CA и в основном используется при передаче голосовых и видеосообщений в режиме реального времени. Область применения централизованно-зарезервированного доступа к среде определяет интерес к нему со стороны злоумышленников. Однако оценка эффективности централизованно-зарезервированного доступа к среде в условиях потенциально возможных деструктивных воздействий не проводилась, а потому сложно определить вклад этих воздействий в снижение эффективности такого доступа. Представлена аналитическая модель централизованно-зарезервированного доступа к среде, учитывающая не только этап его функционирования, но и этап установления в условиях деструктивных воздействий со стороны злоумышленника. Причем в модели этап установления централизованно-зарезервированного доступа к среде отображает последовательную взаимосвязь такого доступа, синхронизации элементов сетей цифровой радиосвязи и случайного множественного доступа к среде типа CSMA/CA. Установлено, что коллизии в канале передачи данных, вызванные деструктивными воздействиями, способны исключить централизованно-зарезервированный доступ к среде еще на этапе его установления. Модель применима при проектировании сетей цифровой радиосвязи семейства стандартов IEEE 802.11, оптимизации работы таких сетей и обнаружении потенциально возможных деструктивных воздействий со стороны злоумышленника.