Применение финитных базисных сплайнов при восстановлении сигналов электрогастроэнтерографии
Ключевые слова:
базисный сплайн, конечная энергия, компактный носитель, биосигнал, автоматизированная обработка биомедицинских сигналов, электрофизиология, электрогастроэнтерографияАннотация
Электрогастроэнтерография — перспективный метод обследования сократительной активности органов пищеварительной системы, основанный на съеме и последующей обработке биоэлектрических сигналов. Прогресс в развитии электрофизиологических методов диагностики в последние годы во многом обеспечен возможностью компьютерной обработки измерительных сигналов. Данная статья посвящена вопросам организации измерений в электрогастроэнтерографии. Дано введение в предметную область, проанализирован информационный состав измерительных сигналов электрогастроэнтерографии, приведены диагностические показатели, получаемые в результате спектрального анализа сигналов, рассмотрены задачи автоматизации диагностики. Предложен новый метод выбора частоты отсчетов гастроэнтерограмм, учитывающий фактор конечной длительности измерительных сеансов и спектральных свойств сигнала. В предлагаемом методе применяется разложение сигнала в виде конечной суммы финитных кардинальных В-сплайнов целых степеней. Проведен вычислительный эксперимент для определения точности восстановления сигнала при используемых в электрогастроэнтерографии параметрах измерительного сеанса.Литература
1. Зайченко К.В., Жаринов О.О., Кулин А.Н. Съем и обработка биоэлектрических сигналов // СПб: РИО ГУАП. 2001. 140 c.
2. Alvarez W.C. The electrogastrogram and what it shows // JAMA. 1922. vol. 78. pp. 1116–1119.
3. Yin J., Chen J. D. Z. Electrogastrography: Methodology, Validation and Applications // Journal of Neurogastroenterology and Motility. 2013. vol. 19. no. 1. pp. 5‒17.
4. Ребров В.Г. Возможности электрогастроинтестинографии при ряде заболеваний желудка и кишечника // Терапевтический архив. 1981. № 10. С. 66‒70.
5. Kosenko P.M., Vavrinchuk S.A. Electrogastroenterography in patients with complicated peptic ulcer // Science Book Publishing House. Yelm. USA. 2013. 164 p.
6. Khan S., Ahmad M. A study on B-spline wavelets and wavelet packets // Applied Mathematics. 2014. vol. 5. pp. 3001–3010.
7. Свиньин С.Ф., Попов А.И. Финитные базисные функции в задачах формирования выборок сигналов конечной протяженности // Труды СПИИРАН. 2015. № 6. С. 50‒67.
8. Riezzo G., Russo F., Indrio F. Electrogastrography in adults and children: the strength, pitfalls, and clinical significance of the cutaneous recording of the gastric electrical activity // BioMed research international. 2013. pp. 1–14.
9. Электрогастроэнтерография: исследование электрической активности желудка и кишечника. URL: http://www.gastroscan.ru/physician/egg/ (дата обращения: 20.08.2016).
10. Попов А.И., Тюльпин А.А., Рудалёв А.В. Программная библиотека для цифровой обработки сигналов электрогастроэнтерографии // Информационно-измерительные и управляющие системы. 2014. №6. С. 40‒45.
11. Свиньин С.Ф., Попов А.И., Рудалёв А.В. Вейвлет-анализ и информационные технологии в задачах обработки электрогастроэнтерограмм // Труды СПИИРАН. 2013. № 27. С.129‒143.
12. Chen J., Lin Z., McCallum R.W. Noninvasive feature-based detection of delayed gastric emptying in humans using neural networks // Biomedical Engineering, IEEE Transactions. 2000. vol. 47. no. 3. pp. 409–412.
13. Liang H. Application of support vector machine to the detection of delayed gastric emptying from electrogastrograms // Support Vector Machines: Theory and Applications. 2005. pp. 399–412.
14. Kara S., Dirgenali F., Okkesim Ş. Detection of gastric dysrhythmia using WT and ANN in diabetic gastroparesis patients // Computers in biology and medicine. 2006. vol. 36. no. 3. pp. 276‒290.
15. Косенко П.М. и др. Математическое моделирование моторно-эвакуаторных нарушений желудочно-кишечного тракта у пациентов с язвенным пилоро-дуоденальным стенозом // Новости хирургии. 2014. Т. 22. № 2. С. 224‒229.
16. Попов А.И., Косенко П.М. Программа для диагностики степени компенсации стеноза по данным электрогастроэнтерографии. Свидетельство об официальной регистрации программы для ЭВМ № 2016614008. 2016.
17. Никольский С.М. Курс математического анализа // М.: Наука. 1973. Т.2 392 с.
18. Слепян А.Д. О ширине полосы // ТИИЭР. 1976. Т. 64. № 3. C. 4‒14.
19. Yang Z., Chen X., He Z. Wave propagation modeling in one-dimension structures be the B-spline wavelet on interval finite elements // Applied Mechanics and Materials. 2012. vol. 105. pp. 3–8.
20. Свиньин С.Ф. Теория и методы формирования выборок сигналов с инфинитными спектрами // СПб: Наука. 2016. 72 с.
21. Li X. Numerical solution of fractional partial diffetential equations using cubic B-spline wavelets collocation method // Australian Communications and Media Autority. 2012. vol. 1. no. 3. pp. 159–164.
22. Гребенников А.И. Метод сплайнов и решение некорректных задач теории приближений // М.: Изд-во Московского ун-та. 1983. 208 с.
23. Rakowski W. Prefiltering in Wavelet Analysis Applying Cubic B-Splines // Intern. journal of electronics and telecommunications. 2014. vol. 60. no. 4. pp. 331‒340.
2. Alvarez W.C. The electrogastrogram and what it shows // JAMA. 1922. vol. 78. pp. 1116–1119.
3. Yin J., Chen J. D. Z. Electrogastrography: Methodology, Validation and Applications // Journal of Neurogastroenterology and Motility. 2013. vol. 19. no. 1. pp. 5‒17.
4. Ребров В.Г. Возможности электрогастроинтестинографии при ряде заболеваний желудка и кишечника // Терапевтический архив. 1981. № 10. С. 66‒70.
5. Kosenko P.M., Vavrinchuk S.A. Electrogastroenterography in patients with complicated peptic ulcer // Science Book Publishing House. Yelm. USA. 2013. 164 p.
6. Khan S., Ahmad M. A study on B-spline wavelets and wavelet packets // Applied Mathematics. 2014. vol. 5. pp. 3001–3010.
7. Свиньин С.Ф., Попов А.И. Финитные базисные функции в задачах формирования выборок сигналов конечной протяженности // Труды СПИИРАН. 2015. № 6. С. 50‒67.
8. Riezzo G., Russo F., Indrio F. Electrogastrography in adults and children: the strength, pitfalls, and clinical significance of the cutaneous recording of the gastric electrical activity // BioMed research international. 2013. pp. 1–14.
9. Электрогастроэнтерография: исследование электрической активности желудка и кишечника. URL: http://www.gastroscan.ru/physician/egg/ (дата обращения: 20.08.2016).
10. Попов А.И., Тюльпин А.А., Рудалёв А.В. Программная библиотека для цифровой обработки сигналов электрогастроэнтерографии // Информационно-измерительные и управляющие системы. 2014. №6. С. 40‒45.
11. Свиньин С.Ф., Попов А.И., Рудалёв А.В. Вейвлет-анализ и информационные технологии в задачах обработки электрогастроэнтерограмм // Труды СПИИРАН. 2013. № 27. С.129‒143.
12. Chen J., Lin Z., McCallum R.W. Noninvasive feature-based detection of delayed gastric emptying in humans using neural networks // Biomedical Engineering, IEEE Transactions. 2000. vol. 47. no. 3. pp. 409–412.
13. Liang H. Application of support vector machine to the detection of delayed gastric emptying from electrogastrograms // Support Vector Machines: Theory and Applications. 2005. pp. 399–412.
14. Kara S., Dirgenali F., Okkesim Ş. Detection of gastric dysrhythmia using WT and ANN in diabetic gastroparesis patients // Computers in biology and medicine. 2006. vol. 36. no. 3. pp. 276‒290.
15. Косенко П.М. и др. Математическое моделирование моторно-эвакуаторных нарушений желудочно-кишечного тракта у пациентов с язвенным пилоро-дуоденальным стенозом // Новости хирургии. 2014. Т. 22. № 2. С. 224‒229.
16. Попов А.И., Косенко П.М. Программа для диагностики степени компенсации стеноза по данным электрогастроэнтерографии. Свидетельство об официальной регистрации программы для ЭВМ № 2016614008. 2016.
17. Никольский С.М. Курс математического анализа // М.: Наука. 1973. Т.2 392 с.
18. Слепян А.Д. О ширине полосы // ТИИЭР. 1976. Т. 64. № 3. C. 4‒14.
19. Yang Z., Chen X., He Z. Wave propagation modeling in one-dimension structures be the B-spline wavelet on interval finite elements // Applied Mechanics and Materials. 2012. vol. 105. pp. 3–8.
20. Свиньин С.Ф. Теория и методы формирования выборок сигналов с инфинитными спектрами // СПб: Наука. 2016. 72 с.
21. Li X. Numerical solution of fractional partial diffetential equations using cubic B-spline wavelets collocation method // Australian Communications and Media Autority. 2012. vol. 1. no. 3. pp. 159–164.
22. Гребенников А.И. Метод сплайнов и решение некорректных задач теории приближений // М.: Изд-во Московского ун-та. 1983. 208 с.
23. Rakowski W. Prefiltering in Wavelet Analysis Applying Cubic B-Splines // Intern. journal of electronics and telecommunications. 2014. vol. 60. no. 4. pp. 331‒340.
Опубликован
2017-02-02
Как цитировать
Попов, А. И., & Свиньин, С. Ф. (2017). Применение финитных базисных сплайнов при восстановлении сигналов электрогастроэнтерографии. Труды СПИИРАН, 1(50), 93-111. https://doi.org/10.15622/sp.50.4
Раздел
Методы управления и обработки информации
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями:
Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале.
Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале.
Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).