Ассоциативная классификация: аналитический обзор. Часть 1
Ключевые слова:
большие данные, ассоциативное правило, ассоциативная классификацияАннотация
В работе описаны основные результаты, модели и методы, разработанные в области ассоциативной классификации, ориентированные на обработку данных большого объема. В работе дается постановка задачи ассоциативной классификации, вводится необходимая терминология и формальные обозначения, используемые в ассоциативной классификации. Приводится описание и сравнительный анализ ранних подходов, методов и конкретных алгоритмов ассоциативной классификации. Дается оценка вклада первых работ, посвящённых ассоциативной классификации, в развитие этого направления.
Литература
Agrawal R., Sricant R. Fast Algorithm for Mining Association rules// Proc. of the 20th Intern. Conference on Very Large Databases, Santiago, Chile, 1994.
Aliferis С.F., Statnikov A., et al. Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research, No. 11. (2010), pp. 171-234.
Aliferis С.F., Statnikov A., et al. Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions. Journal of Machine Learning Research, No. 11. (2010) pp. 235 – 299.
Big Data. // Wikipedia.org: the free encyclopedia. URL: http://en.wikipedia.org/w/index. php?title=Big_data&oldid=556537897 (дата обращения 20.06.2014 г.)
Blake C.L., Murphy P.M. UCI Repository of machine learning database. Irvine, CA: University of California, Department of Information and Computer Science, 1998. URL: http://www.cs.uci.edu/ mleam/mlrepository.html (дата обращения 20.06.2014 г.)
Brin S., Motwani R., Silverstein C. Beyond market baskets: generalizing association rules to correlations// Proc. of the ACM SIGMOD Intern. Conf. on Management of Data. 1997. P. 255–264.
Cohen W. Fast effective rule induction// Proc. of the ICML'95, Tahoe City, CA, July 1995. P. 115–123.
Dong G., Li J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences// Proc. of the KDD'99, 1999.
Dong G., Zhang X., Wong L., Li J. CAEP: Classification by Aggregating Emerging Patterns// Proc. of the DS'99, 1999. P. 30–42.
Douglas L. 3D Data Management: Controlling Data Volume, Velocity and Variety. URL: http://blogs. gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf (дата обращения 20.06.2014 г.)
Fan H., Ramamohanarao K. Fast Discovery and the Generalization of Strong Jumping Emerging Patterns for Building Compact and Accurate Classifiers// IEEE Trans. Knowl. Data Eng. 2006. Vol. 18(6). P. 721-737.
Han J., Pei J., Yin Y. Mining frequent patterns without candidate generation// Proc. of the ACM SIGMOD Intern. Conf. on Management of Data. 2000. P. 1–12.
Huang Z., Zhou Z., He T., Wang X. ACAC: Associative Classification based on All-Confidence. IEEE International Conference on Granular Computing (GrC), pp. 289-293, 2011.
Ibrahim S., Chandran K.R. Compact Weighted Class Association Rule Mining using Information Gain. International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.1, No.6, 2011.
Li J., Dong G. and Ramamohanarao K. Making use of the most expressive jumping emerging patterns for classification// Proc. of the Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Kyoto, Japan, 2000. P. 220-232.
Li W., Han J., Pei J. CMAR: Accurate and efficient classification based on multiple class-association rules// Proc. of the ICDM'01, San Jose, CA, Nov. 2001. P. 369–376.
Liu B., Hsu W., Ma Y. Integrating classification and association rule mining// Proc. of the KDD'98, New York, NY, Aug. 1998. P. 80–86.
Piatetsky–Shapiro, G. Discover, analysis, and presentation of strong rules// Proc. in the Knowledge discovery from Databases. G.Piatetsky–Shapiro and W.Frawley (Eds.), AAAI Press/MIT Press, 1991. P. 229-248.
Quinlan J.R. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
Quinlan J.R., Cameron-Jones R.M. FOIL: A midterm report// Proc. in the European Conference on Machine Learning, Vienna, Austria, 1993. P. 3 – 20.
Schapire R.E. The Boosting Approach to Machine Learning. An Overview Nonlinear Estimation and Classification, Springer, 2003, Lecture Notes in Statistics, Vol. 171 Denison, D.D.; Hansen, M.H.; Holmes, C.C.; Mallick, B.; Yu, B. (Eds). P. 149–172.
Wedyan S. Review and Comparison of Associative Classification Data Mining Approaches. International Journal of Computer, Information, Systems and Control Engineering. Vol. 8 No.1, 2014.
Yin X., Han J. CPAR: Classification Based on Predictive Association Rule// Proc in the SDM'03, 2003. P. 369–376.