Анализ современных исследований по защите от состязательных атак в энергетических системах
Ключевые слова:
кибератаки, искусственный интеллект, машинное обучение, состязательные атаки, модель угроз, методы защиты, обзор, энергетические системы, классификацияАннотация
Системы на основе машинного обучения в настоящее время являются привлекательными мишенями для злоумышленников, поскольку нарушение работы таких систем может иметь серьезные последствия для объектов критической инфраструктуры, в частности, энергетических систем. В связи с этим количество различных типов кибератак на системы машинного обучения, которые называются состязательными атаками, постоянно растёт, и эти атаки являются предметом изучения многих исследователей. Соответственно, ежегодно появляется множество публикаций, посвящённых обзорам состязательных атак и методов защиты от них. Многие виды состязательных атак и методы защиты в этих обзорных статьях пересекаются. Однако в более поздних исследованиях содержится информация о новых типах атак и методах защиты. Цель данной статьи – проанализировать исследования, проведённые за последние шесть лет и опубликованные в высокорейтинговых журналах, с акцентом на обзорные работы. Результатом исследования является уточнённая классификация состязательных атак, характеристика наиболее распространённых атак, а также уточнённая классификация и характеристика методов защиты от этих атак. Основное внимание в анализе уделяется состязательным атакам, нацеленным на энергетические системы. В заключительной части статьи рассматриваются преимущества и недостатки различных методов противодействия состязательным атакам.
Литература
2. Farhat R., Mourali Y., Jemni M., Ezzedine H. An overview of Machine Learning Technologies and their use in E-learning. Proceedings of the 2020 International Multi-Conference on Organization of Knowledge and Advanced Technologies (OCTA). 2020. pp. 1–4.
3. Liu Q., Li P., Zhao W., Cai W., Yu S., Leung V.C.M. A Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View. IEEE Access. 2018. vol. 6. pp. 12103–12117.
4. Pitropakis N., Panaousis E., Giannetsos T., Anastasiadis E., Loukas G. A taxonomy and survey of attacks against machine learning. Computer Science Review. 2019. vol. 34.
5. Tcukanova O.A., Yarskaya A.A., Torosyan A.A. Artificial Intelligence as a New Stage in the Development of Business Intelligence Systems. Proceedings of the International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). 2022. pp. 315–318.
6. Bland J.A., Petty M.D., Whitaker T.S., Maxwell K.P., Cantrell W.A. Machine Learning Cyberattack and Defense Strategies. Computers & Security. 2020. vol. 92.
7. Onyeji I., Bazilian M., Bronk C. Cyber security and critical energy infrastructure. The Electricity Journal. 2014. vol. 27. pp. 52–60.
8. Santis E.D., Rizzi A., Sadeghian A. A cluster-based dissimilarity learning approach for localized fault classification in smart grids. Swarm Evol. Comput. 2018. vol. 39. pp. 267–278.
9. Umapathy K., Dinesh Kumar T., Poojitha G., Khyathi Sri D., Pavaneeswar C., Amannah C. Machine Learning Applications for the Smart Grid. Data Analytics for Smart Grids Applications – A Key to Smart City Development. Intelligent Systems Reference Library. 2023. vol. 247. pp. 251–270.
10. Zhao Z., Chen G. An Overview of Cyber Security for Smart Grid. Proceedings of the 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE). 2018. pp. 1127–1131.
11. Biggio B., Corona I., Maiorca D., Nelson B., Srndic N., Laskov P., Giacinto G., Roli F. Evasion Attacks against Machine Learning at Test Time. Advanced Information Systems Engineering. Lecture Notes in Computer Science. 2013. vol. 7908. pp. 387–402.
12. Goodfellow I.J., Shlens J., Szegedy C. Explaining and Harnessing Adversarial Examples. Proceedings of the International Conference on Learning Representations (ICLR’15). 2015. arXiv preprint arXiv:1412.6572.
13. Nguyen T.N., Liu B.-H., Nguyen N.P., Chou J.-T. Cyber Security of Smart Grid: Attacks and Defenses. Proceedings of the IEEE International Conference on Communications (ICC). 2020. pp. 1–6.
14. Kawoosa A.I., Prashar D. A Review of Cyber Securities in Smart Grid Technology. Proceedings of the 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM). 2021. pp. 151–156.
15. Madhavarapu V.P.K., Bhattacharjee S., Dasy S.K. A Generative Model for Evasion Attacks in Smart Grid. Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2022. pp. 1–6.
16. Cui L., Qu Y., Gao L., Xie G., Yu S. Detecting false data attacks using machine learning techniques in smart grid: A survey. J. Netw. Comput. Appl. 2020. vol. 170.
17. Kotenko I., Saenko I., Lauta O., Kribel K., Vasiliev N. Attacks Against Artificial Intelligence Systems: Classification, The Threat Model and the Approach to Protection. Proceedings of the Sixth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’22). 2023. pp. 293–302.
18. Kotenko I., Saenko I., Lauta O., Vasiliev N., Iatsenko D. Attacks Against Machine Learning Systems: Analysis and GAN-based Approach to Protection. Proceedings of the Seventh International Scientific Conference «Intelligent Information Technologies for Industry» (IITI’23). 2023. pp. 49–59.
19. Huang X., Kroening D., Ruan W., Sharp J., Sun Y., Thamo E., Wu M., Yi X. A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability. Computer Science Review. 2020. vol. 37.
20. Martins N., Cruz J.M., Cruz T., Henriques Abreu P. Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: A Systematic Review. IEEE Access. 2020. vol. 8. pp. 35403–35419.
21. Oseni A., Moustafa N., Janicke H., Liu P., Tari Z., Vasilakos A. Security and Privacy for Artificial Intelligence: Opportunities and Challenges. 2020. arXiv preprint arXiv:2102.04661.
22. Xu H., Ma Y., Liu H.C., Deb D., Liu H., Tang J.-L., Jain A.K. Adversarial Attacks and Defenses in Images, Graphs and Text: A Review. Int. J. Autom. Comput. 2020. vol. 17. pp. 151–178.
23. Ren K., Zheng T., Qin Zh., Liu X. Adversarial Attacks and Defenses in Deep Learning. Engineering. 2020. vol. 6. pp. 346–360.
24. Zhou X., Canady R., Li Y., Koutsoukos X., Gokhale A. Overcoming Stealthy Adversarial Attacks on Power Grid Load Predictions Through Dynamic Data Repair. Dynamic Data Driven Applications Systems (DDDAS 2020). Lecture Notes in Computer Science. 2020. vol. 12312. pp. 102–109.
25. Akhtar N., Mian A., Kardan N., Shah M. Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey. IEEE Access. 2021. vol. 9. pp. 155161–155196.
26. Zhang H., Liu B., Wu H. Smart Grid Cyber-Physical Attack and Defense: A Review. IEEE Access. 2021. vol. 9. pp. 29641–29659.
27. Chakraborty A., Alam M., Dey V., Chattopadhyay A., Mukhopadhyay D. A survey on adversarial attacks and defences. CAAI Trans. Intell. Technol. 2021. vol. 6. pp. 25–45.
28. Rosenberg I., Shabtai A., Elovici Y., Rokach L. Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain. ACM Comput. Surv. 2021. vol. 54(5). pp. 1–36.
29. Tian J., Wang B., Li J., Konstantinou C. Adversarial attack and defense methods for neural network-based state estimation in smart grid. IET Renewable Power Generation. 2022. vol. 16. pp. 3507–3518.
30. Kong Z., Xue J., Wang Y., Huang L., Niu Z., Li F., Meng W. A Survey on Adversarial Attack in the Age of Artificial Intelligence. Wireless Communications and Mobile Computing. 2021. vol. 2021(1).
31. Zhou Sh., Liu Ch., Ye D., Zhu T., Zhou W., Yu Ph.S. Adversarial Attacks and Defenses in Deep Learning: From a Perspective of Cybersecurity. ACM Comput. Surv. 2022. vol. 55(8). pp. 1–39.
32. Khamaiseh S.Y., Bagagem D., Al-Alaj A., Mancino M., Alomari H.W. Adversarial Deep Learning: A Survey on Adversarial Attacks and Defense Mechanisms on Image Classification. IEEE Access. 2022. vol. 10. pp. 102266–102291.
33. Liang H., He E., Zhao Y., Jia Z., Li H. Adversarial Attack and Defense: A Survey. Electronics. 2022. vol. 11.
34. Tian Q., Zhang S., Mao Sh., Lin Y. Adversarial attacks and defenses for digital communication signals identification. Digital Communications and Networks. 2024. vol. 10. no. 3. pp. 756–764.
35. Anastasiou Th., Karagiorgou S., Petrou P., Papamartzivanos D., Giannetsos Th., Tsirigotaki G., Keizer J. Towards Robustifying Image Classifiers against the Perils of Adversarial Attacks on Artificial Intelligence Systems. Sensors. 2022. vol. 22.
36. Li Y., Cheng M., Hsieh Ch.-J., Lee Th.C.M. A Review of Adversarial Attack and Defense for Classification Methods. The American Statistician. 2022. vol. 76(4). pp. 329–345.
37. Tian J., Wang B., Li J., Wang Z. Adversarial Attacks and Defense for CNN Based Power Quality Recognition in Smart Grid. IEEE Transactions on Network Science and Engineering. 2021. vol. 9(2). pp. 807–819.
38. Li H., Namiot D. A Survey of Adversarial Attacks and Defenses for Image Data on Deep Learning. International Journal of Open Information Technologies. 2022. vol. 10. pp. 9–16.
39. Girdhar M., Hong J., Moore J. Cybersecurity of Autonomous Vehicles: A Systematic Literature Review of Adversarial Attacks and Defense Models. IEEE Open Journal of Vehicular Technology. 2023. vol. 4. pp. 417–437.
40. Goyal Sh., Doddapaneni S., Khapra M.M., Ravindran B. A Survey of Adversarial Defenses and Robustness in NLP. ACM Comput. Surv. 2023. vol. 55.
41. Al-Khassawneh Y.A. A Review of Artificial Intelligence in Security and Privacy: Research Advances, Applications, Opportunities, and Challenges. Indonesian Journal of Science and Technology. 2023. vol. 8. pp. 79–96.
42. He K., Kim D.D., Asghar M.R. Adversarial Machine Learning for Network Intrusion Detection Systems: A Comprehensive Survey. IEEE Communications Surveys & Tutorials. 2023. vol. 25(1). pp. 538–566.
43. Sun L., Dou Y., Yang C., Zhang K., Wang J., Yu Ph.S., He L., Li B. Adversarial Attack and Defense on Graph Data: A Survey. IEEE Transactions on Knowledge and Data Engineering. 2023. vol. 35(8). pp. 7693–7711.
44. Qureshi A.U.H., Larijani H., Yousefi M., Adeel A., Mtetwa N. An Adversarial Approach for Intrusion Detection Systems Using Jacobian Saliency Map Attacks (JSMA) Algorithm. Computers. 2020. vol. 9(3).
45. Hoang V.-T., Ergu Y.A., Nguyen V.-L., Chang R.-G. Security risks and countermeasures of adversarial attacks on AI-driven applications in 6G networks: A survey. Journal of Network and Computer Applications. 2024. vol. 232.
46. Baniecki H., Biecek P. Adversarial attacks and defenses in explainable artificial intelligence: A survey. Information Fusion. 2024. vol. 107.
47. Andrade E. de O., Guérin J., Viterbo J., Sampaio I.G.B. Adversarial attacks and defenses in person search: A systematic mapping study and taxonomy. Image and Vision Computing. 2024. vol. 148.
48. Zhang Ch., Hu M., Li W., Wang L. Adversarial attacks and defenses on text-to-image diffusion models: A survey. Information Fusion. 2025. vol. 114.
49. Hao J., Tao Y. Adversarial attacks on deep learning models in smart grids. Energy Reports. 2022. vol. 8. pp. 123–129.
50. Sande-Ríos J., Canal-Sánchez J., Manzano-Hernández C., Pastrana S. Threat Analysis and Adversarial Model for Smart Grids. Proceeding of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). 2024. pp. 130–145.
51. Elsisi M., Su C.-L., Ali M.N. Design of Reliable IoT Systems With Deep Learning to Support Resilient Demand Side Management in Smart Grids Against Adversarial Attacks. Transactions on Industry Applications. 2024. vol. 60. pp. 2095–2106.
52. Ahmadian S., Malki H., Han Z. Cyber Attacks on Smart Energy Grids Using Generative Adverserial Networks. Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP). 2018. pp. 942–946.
53. Takiddin A., Ismail M., Zafar U., Serpedin E. Robust Electricity Theft Detection Against Data Poisoning Attacks in Smart Grids. IEEE Transactions on Smart Grid. 2021. vol. 12. pp. 2675–2684.
54. Takiddin A., Ismail M., Serpedin E. Robust Data-Driven Detection of Electricity Theft Adversarial Evasion Attacks in Smart Grids. IEEE Transactions on Smart Grid. 2023. vol. 14. pp. 663–676.
55. Bondok A.H., Mahmoud M., Badr M.M., Fouda M.M., Abdallah M., Alsabaan M. Novel Evasion Attacks against Adversarial Training Defense for Smart Grid Federated Learning. IEEE Access. 2023. vol. 11. pp. 112953–112972.
56. Sampedro G.A., Ojo S., Krichen M., Alamro M.A., Mihoub A., Karovic V. Defending AI Models Against Adversarial Attacks in Smart Grids Using Deep Learning. IEEE Access. 2024. vol. 12. pp. 157408–157417. DOI: 10.1109/ACCESS.2024.3473531.
57. Khan S.U., Mynuddin M., Nabil M. AdaptEdge: Targeted Universal Adversarial Attacks on Time Series Data in Smart Grids. IEEE Transactions on Smart Grid. 2024. vol. 15. pp. 5072–5086.
58. Berghout T., Benbouzid M., Amirat Y. Towards Resilient and Secure Smart Grids against PMU Adversarial Attacks: A Deep Learning-Based Robust Data Engineering Approach. Electronics. 2023. vol. 12.
59. Teryak H., Albaseer A., Abdallah M., Al-Kuwari S., Qaraqe M. Double-Edged Defense: Thwarting Cyber Attacks and Adversarial Machine Learning in IEC 60870-5-104 Smart Grids. IEEE Open Journal of the Industrial Electronics Society. 2023. vol. 4. pp. 629–642.
60. Ness S. Adversarial Attack Detection in Smart Grids Using Deep Learning Architectures. IEEE Access. 2025. vol. 13. pp. 16314–16323. DOI: 10.1109/ACCESS.2024.3523409.
61. Zhang G., Sikdar B. Ensemble and Transfer Adversarial Attack on Smart Grid Demand-Response Mechanisms. Proceedings of the IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). IEEE, 2022. pp. 53–58.
62. Zhang G., Sikdar B. A Novel Adversarial FDI Attack and Defense Mechanism for Smart Grid Demand-Response Mechanisms. IEEE Transactions on Industrial Cyber-Physical Systems. 2024. vol. 2. pp. 380–390. DOI: 10.1109/TICPS.2024.3448380.
63. Reda H.T., Anwar A., Mahmood A. Comprehensive survey and taxonomies of false data injection attacks in smart grids: attack models, targets, and impacts. Renewable and Sustainable Energy Reviews. 2022. vol. 163.
64. Ren Y., Zhang H., Yang W., Li M., Zhang J., Li H. Transferable Adversarial Attack Against Deep Reinforcement Learning-Based Smart Grid Dynamic Pricing System. IEEE Transactions on Industrial Informatics. 2024. vol. 20. pp. 9015–9025.
65. He J., Xiang T., Wu T., Chen Z., Wang N., Guo S. Maintaining Privacy in Smart Grid: Utilizing the Adversarial Attack Paradigm to Counter Non-Intrusive Load Monitoring Models. IEEE Internet of Things Journal. 2024.
66. Guihai Z., Sikdar B. Adversarial Machine Learning Against False Data Injection Attack Detection for Smart Grid Demand Response. Proceedings of the IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). 2021. pp. 352–357.
67. Aurangzeb M., Wang Y., Iqbal S., Naveed A., Ahmed Z., Alenezi M., Shouran M. Enhancing cybersecurity in smart grids: Deep black box adversarial attacks and quantum voting ensemble models for blockchain privacy-preserving storage. Energy Reports. 2024. vol. 11. pp. 2493–2515.
68. Melendez K.A., Matamala Y. Adversarial attacks in demand-side electricity markets. Applied Energy. 2025. vol. 377.
69. Nguyen T., Wang S., Alhazmi M., Nazemi M., Estebsari A., Dehghanian P. Electric Power Grid Resilience to Cyber Adversaries: State of the Art. IEEE Access. 2020. vol. 8. pp. 87592–87608.
70. Efatinasab E., Brighente A., Rampazzo M., Azadi N., Conti M. GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction. Computer Security – ESORICS 2024. Lecture Notes in Computer Science. 2024. vol. 14982. pp. 374–393.
71. Takiddin A., Ismail M., Atat R., Serpedin E. Spatio-temporal Graph-Based Generation and Detection of Adversarial False Data Injection Evasion Attacks in Smart Grids. IEEE Transactions on Artificial Intelligence. 2024. vol. 5(12). pp. 6601–6616. DOI: 10.1109/TAI.2024.3464511.
72. Omara A., Kantarci B. An AI-driven solution to prevent adversarial attacks on mobile Vehicle-to-Microgrid services. Simulation Modelling Practice and Theory. 2024. vol. 137.
73. Tian J., Shen C., Wang B., Ren C., Xia X., Dong R., Cheng T. EVADE: Targeted Adversarial False Data Injection Attacks for State Estimation in Smart Grid. IEEE Transactions on Sustainable Computing. 2024.
74. Efatinasab E., Sinigaglia A., Azadi N., Susto G.A., Rampazzo M. Adversarially Robust Fault Zone Prediction in Smart Grids With Bayesian Neural Networks. IEEE Access. 2024. vol. 12. pp. 121169–121184.
75. Zhang Z., Liu M., Sun M., Deng R., Cheng P., Niyato D., Chow M.-Y., Chen J. Vulnerability of Machine Learning Approaches Applied in IoT-Based Smart Grid: A Review. IEEE Internet of Things Journal. 2024. vol. 11(11). pp. 18951–18975.
76. Sánchez G., Elbez G., Hagenmeyer V. Attacking Learning-based Models in Smart Grids: Current Challenges and New Frontiers. Proceedings of the 15th ACM International Conference on Future and Sustainable Energy Systems (e-Energy '24). 2024. pp. 589–595.
77. Huang R., Li Y. Adversarial Attack Mitigation Strategy for Machine Learning-Based Network Attack Detection Model in Power System. IEEE Transactions on Smart Grid. 2022. vol. 14(3). pp. 2367–2376.
78. Ruan J., Wang Q., Chen S., Lyu H., Liang G., Zhao J., Dong Z.Y. On Vulnerability of Renewable Energy Forecasting: Adversarial Learning Attacks. IEEE Transactions on Industrial Informatics. 2023. vol. 20(3). pp. 3650–3663.
79. Heinrich R., Scholz C., Vogt S., Lehna M. Targeted adversarial attacks on wind power forecasts. Mach Learn. 2024. vol. 113(2). pp. 863–889.
80. Tang N., Mao S., Nelms R.M. Adversarial Attacks to Solar Power Forecast. Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM). 2021. pp. 1–6.
81. KhanS.U., Mynuddin M., Adom I., Mahmoud M.N. Mitigating Targeted Universal Adversarial Attacks on Time Series Power Quality Disturbances Models. Proceedings of the 5th IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). 2023. pp. 91–100.
82. Gunn S., Jang D., Paradise O., Spangher L., Spanos C.J. Adversarial poisoning attacks on reinforcement learning-driven energy pricing. Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys '22). 2024. pp. 262–265.
83. Zhang L., Jiang C., Pang A., He Y. Super-efficient detector and defense method for adversarial attacks in power quality classification. Applied Energy. 2024. vol. 361.
84. Sayghe A., Zhao J., Konstantinou C. Evasion Attacks with Adversarial Deep Learning Against Power System State Estimation. Proceedings of the IEEE Power & Energy Society General Meeting (PESGM). 2020. pp. 1–5.
85. Akter K., Rahman M.A., Islam R.M., Sheikh R.I., Hossain M.J. Attack-resilient framework for wind power forecasting against civil and adversarial attacks. Electric Power Systems Research. 2025. vol. 238.
86. Li J., Wang J., Chen L., Yu Y. Defending Against Adversarial Attacks by Energy Storage Facility. Proceedings of the IEEE Power & Energy Society General Meeting (PESGM). 2022. pp. 1–5.
87. Farajzadeh-Zanjani M., Hallaji E., Razavi-Far R., Saif M., Parvania M. Adversarial Semi-Supervised Learning for Diagnosing Faults and Attacks in Power Grids. IEEE Transactions on Smart Grid. 2021. vol. 12(4). pp. 3468–3478.
88. Zhou Y., Ding Z., Wen Q., Wang Y. Robust Load Forecasting Towards Adversarial Attacks via Bayesian Learning. IEEE Transactions on Power Systems. 2023. vol. 38. pp. 1445–1459.
89. Zhang L., Jiang C., Chai Z., He Y. Adversarial attack and training for deep neural network based power quality disturbance classification. Engineering Applications of Artificial Intelligence. 2024. vol. 127.
90. Li W., Deka D., Wang R., Paternina M.R.A. Physics-Constrained Adversarial Training for Neural Networks in Stochastic Power Grids. IEEE Transactions on Artificial Intelligence. 2024. vol. 5(3). pp. 1121–1131. DOI: 10.1109/TAI.2023.3236377.
91. Afrin A., Ardakanian O. Adversarial Attacks on Machine Learning-Based State Estimation in Power Distribution Systems. Proceedings of the 14th ACM International Conference on Future Energy Systems (e-Energy '23). 2023. pp. 446–458.
92. Tian J., Wang B., Wang Z., Cao K., Li J., Ozay M. Joint Adversarial Example and False Data Injection Attacks for State Estimation in Power Systems. IEEE Transactions on Cybernetics. 2022. vol. 52(12). pp. 13699–13713.
93. Ali M.N., Amer M., Elsisi M. Reliable IoT Paradigm with Ensemble Machine Learning for Faults Diagnosis of Power Transformers Considering Adversarial Attacks. IEEE Transactions on Instrumentation and Measurement. 2023. vol. 72. pp. 1–13.
94. Kim B., Shi Y., Sagduyu Y.E., Erpek T., Ulukus S. Adversarial Attacks against Deep Learning Based Power Control in Wireless Communications. Proceedings of the IEEE Globecom Workshops (GC Wkshps). 2021. pp. 1–6.
95. Manoj B.R., Sadeghi M., Larsson E.G. Adversarial Attacks on Deep Learning Based Power Allocation in a Massive MIMO Network. Proceedings of the ICC – IEEE International Conference on Communications. 2021. pp. 1–6.
96. Manoj B.R., Sadeghi M., Larsson E.G. Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial Attacks and Training. IEEE Transactions on Cognitive Communications and Networking. 2022. vol. 8(2). pp. 707–719.
97. Santos P.M., Manoj B.R., Sadeghi M., Larsson E.G. Universal Adversarial Attacks on Neural Networks for Power Allocation in a Massive MIMO System. IEEE Wireless Communications Letters. 2022. vol. 11(1). pp. 67–71.
98. Shabbir A., Manzoor H.U., Ahmed R.A., Halim Z. Resilience of Federated Learning Against False Data Injection Attacks in Energy Forecasting. Proceedings of the 2024 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). 2024. pp. 245–249.
99. Xu S., Yu L., Lin X. Robust Low-Overhead Control of DER Reactive Power under Adversarial Attacks and Uncertainty. Proceedings of the ICC 2024 – IEEE International Conference on Communications. 2024. pp. 3097–3103.
100. Kuzlu M., Sarp S., Catak F.O., Cali U., Zhao Y., Elma O., Guler O. Analysis of deceptive data attacks with adversarial machine learning for solar photovoltaic power generation forecasting. Electr. Eng. 2024. vol. 106(2). pp. 1815–1823.
101. Zideh M.J., Khalghani M.R., Solanki S.K. An unsupervised adversarial autoencoder for cyber attack detection in power distribution grids. Electric Power Systems Research. 2024. vol. 232.
102. Zeng L., Qiu D., Sun M. Resilience enhancement of multi-agent reinforcement learning-based demand response against adversarial attacks. Applied Energy. 2022. vol. 324.
103. Zografopoulos I., Hatziargyriou N.D., Konstantinou C. Distributed Energy Resources Cybersecurity Outlook: Vulnerabilities, Attacks, Impacts, and Mitigations. IEEE Systems Journal. 2023. vol. 17. pp. 6695–6709.
104. Santana E.J., Silva R.P., Zarpelão B.B., Barbon Junior S. Detecting and Mitigating Adversarial Examples in Regression Tasks: A Photovoltaic Power Generation Forecasting Case Study. Information. 2021. vol. 12(10).
105. Youssef E.-N.S., Labeau F., Kassouf M. Adversarial Dynamic Load-Altering Cyberattacks Against Peak Shaving Using Residential Electric Water Heaters. IEEE Transactions on Smart Grid. 2024. vol. 15(2). pp. 2073–2088.
106. Bhattacharjee A., Bai G., Tushar W., Verma A., Mishra S., Saha T.K. DeeBBAA: A Benchmark Deep Black-Box Adversarial Attack Against Cyber–Physical Power Systems. IEEE Internet of Things Journal. 2024. vol. 11(24). pp. 40670–40688. DOI: 10.1109/JIOT.2024.3454257.
107. Genç D., Özuysal M., Tomur E. A Taxonomic Survey of Model Extraction Attacks. Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience (CSR). 2023. pp. 200–205.
108. Fan J., Yan Q., Li M., Qu G., Xiao Y. A Survey on Data Poisoning Attacks and Defenses. Proceedings of the 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). 2022. pp. 48–55.
109. Wang S., Ko R.K.L., Bai G., Dong N., Choi T., Zhang Y. Evasion Attack and Defense on Machine Learning Models in Cyber-Physical Systems: A Survey. IEEE Communications Surveys & Tutorials. 2024. vol. 26. pp. 930–966.
110. El-Toukhy A.T., Mahmoud M., Bondok A.H., Fouda M.M., Alsabaan M. Evasion Attacks in Smart Power Grids: A Deep Reinforcement Learning Approach. Proceedings of the 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC). 2024. pp. 708–713.
111. Ali Alatwi H., Morisset C. Threat Modeling for Machine Learning-Based Network Intrusion Detection Systems. Proceedings of the IEEE International Conference on Big Data (Big Data). 2022. pp. 4226–4235.
112. Qiu S., Liu Q., Zhou S., Wu C. Review of Artificial Intelligence Adversarial Attack and Defense Technologies. Applied sciences. 2019. vol. 9(5).
113. Tuna O.F., Catak F.O., Eskil M.T. Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples. Multimed Tools Appl. 2022. vol. 81. pp. 11479–11500.
114. Dubrovkin J. Evaluation of undetectable perturbations of the peak parameters estimated by the least square curve fitting of analytical signal consisting of overlapping peaks. Chemom. and Intel. Lab. Syst. 2016. vol. 153. pp. 9–21.
115. Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 2002. vol. 86(11). pp. 2278–2324.
116. Liu X., Cheng M., Zhang H., Hsieh C.J. Towards Robust Neural Networks via Random Self-ensemble. Computer Vision – ECCV 2018. Lecture Notes in Computer Science. 2018. vol. 11211. pp. 381–397.
117. McCarthy A., Ghadafi E., Andriotis P., Legg P. Functionality-Preserving Adversarial Machine Learning for Robust Classification in Cybersecurity and Intrusion Detection Domains: A Survey. Journal of Cybersecurity and Privacy. 2022. vol. 2(1). pp. 154–190.
118. Goodfellow I., McDaniel P., Papernot N. Making Machine Learning Robust Against Adversarial Inputs. Communications of the ACM. 2018. vol. 61(7). pp. 56–66.
119. Li J., Yang Y., Sun J., Tomsovic K.L., Qi H. Towards Adversarial-Resilient Deep Neural Networks for False Data Injection Attack Detection in Power Grids. Proceedings of the 32nd International Conference on Computer Communications and Networks (ICCCN). 2023. pp. 1–10.
120. Li Y., Wang Y. Defense Against Adversarial Attacks in Deep Learning. Applied Sciences. 2018. vol. 9(1).
121. Zantedeschi V., Nicolae M.-I., Rawat A. Efficient Defenses Against Adversarial Attacks. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security (AISec '17). 2017. pp. 39–49.
122. Sarker A., Shen H., Sen T., Mendelson Q. Efficient Black-Box Adversarial Attacks for Deep Driving Maneuver Classification Models. Proceedings of the 18th International Conference on Mobile Ad Hoc and Smart Systems. 2021. pp. 536–544.
123. Gibert D., Zizzo G., Le Q., Planes J. Adversarial Robustness of Deep Learning-Based Malware Detectors via (De)Randomized Smoothing, IEEE Access. 2024. vol. 12. pp. 61152–61162.
124. Yuan X., He P., Zhu Q., Li X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Transactions on Neural Networks and Learning Systems. 2019. vol. 30(9). pp. 2805–2824.
125. Ozturk E., Mesut A. Comparison of Learned Image Compression Methods and JPEG. Proceedings of the 2024 Innovations in Intelligent Systems and Applications Conference (ASYU). 2024. pp. 1–6.
126. Zhou Z., Firestone C. Humans can decipher adversarial images. Nat. Commun. 2019. vol. 10(1).
127. Mohammed A., Ali Z., Ahmad I. Enhancing adversarial robustness with randomized interlayer processing. Expert Systems with Applications. 2024. vol. 245.
128. Shi Y., Zeng H., Nguyen T.T. Adversarial Machine Learning for Network Security. Proceedings of the International Symposium on Technologies for Homeland Security. 2019. pp. 1–7.
129. Eleftheriadis C., Symeonidis A., Katsaros P. Adversarial robustness improvement for deep neural networks. Machine Vision and Applications. 2024. vol. 35(3).
130. Han S., Lin Ch., Shen Ch., Wang Q., Guan X. Interpreting Adversarial Examples in Deep Learning: A Review. ACM Comput. Surv. 2023. vol. 55. no. 14s. pp. 1–38.
131. Li B., Liu W. WAT: Improve the Worst-Class Robustness in Adversarial Training. In Proceedings of the AAAI Conference on Artificial Intelligence. 2023. vol. 37(12). pp. 14982–14990.
132. Liu N., Du M., Guo R., Liu H., Hu X. Adversarial Attacks and Defenses: An Interpretation Perspective. SIGKDD Explor. Newsl. 2021. vol. 23(1). pp. 86–99.
133. Peng Y., Fu G., Luo Y., Yu Q., Wang L. CNN-based Steganalysis Detects Adversarial Steganography via Adversarial Training and Feature Squeezing. Proceedings of the 4th International Conference on Information Science, Parallel and Distributed Systems (ISPDS). 2023. pp. 165–169.
134. Wang W., Park Y., Lee T., Molloy I., Tang P., Xiong L. Utilizing Multimodal Feature Consistency to Detect Adversarial Examples on Clinical Summaries. Proceedings of the 3rd Clinical Natural Language Processing Workshop, Association for Computational Linguistics. 2020. pp. 259–268.
135. Shao J., Geng S., Fu Z., Xu W., Liu T., Hong S. CardioDefense: Defending against adversarial attack in ECG classification with adversarial distillation training. Biomedical Signal Processing and Control. 2024. vol. 91. DOI: 10.1016/j.bspc.2023.105922.
136. Li H., Xu X., Zhang X., Yang Sh., Li B. Qeba: Query-efficient boundary-based blackbox attack. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. pp. 1221–1230.
137. RyouD Ha I., Yoo H., Kim D., Han B. Robust Image Denoising Through Adversarial Frequency Mixup. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024. pp. 2723–2732.
138. Tyukin I.Y., Higham D.J., Gorban A.N. On Adversarial Examples and Stealth Attacks in Artificial Intelligence Systems. Proceedings of the International Joint Conference on Neural Networks (IJCNN). 2020. pp. 1–6.
139. Shimizu Y. Automatic Design System with Generative Adversarial Network and Vision Transformer for Efficiency Optimization of Interior Permanent Magnet Synchronous Motor. IEEE Transactions on Industrial Electronics. 2024. vol. 71(11). pp. 14600–14609.
140. Barth A., Rubinstein B.I.P., Sundararajan M., Mitchell J.C., Song D., Bartlett P.L. A Learning-Based Approach to Reactive Security. IEEE Transactions on Dependable and Secure Computing. 2012. vol. 9(4). pp. 482–493.
141. Aly A., Iqbal S., Youssef A., Mansour E. MEGR-APT: A Memory-Efficient APT Hunting System Based on Attack Representation Learning. IEEE Transactions on Information Forensics and Security. 2024. vol. 19. pp. 5257–5271.
142. Deng Y., Zheng X., Zhang T., Chen C., Lou G., Kim M. An Analysis of Adversarial Attacks and Defenses on Autonomous Driving Models. Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom). 2020. pp. 1–10.
143. He X., Yao J., Wang Y., Tang Z., Cheung K.C., See S., Han B., Chu X. NAS-LID: Efficient Neural Architecture Search with Local Intrinsic Dimension. Proceedings of the AAAI Conference on Artificial Intelligence. 2023. vol. 37(6). pp. 7839–7847.
144. Biggio B., Roli F. Wild patterns: Ten years after the rise of adversarial machine learning. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS '18). 2018. pp. 2154–2156.
145. Kwatra S., Torra V. Data Reconstruction Attack Against Principal Component Analysis. Security and Privacy in Social Networks and Big Data (SocialSec 2023). Lecture Notes in Computer Sciences. 2023. vol. 14097. pp. 79–92.
146. Pachika S., Reddy A.B., Pachika B., Karnam A. Generative Adversarial Networks: Overview. Proceedings of the Fifth International Conference on Computer and Communication Technologies (IC3T 2023). Lecture Notes in Computer Sciences. 2024. vol. 897. pp. 319–328.
147. Li H., Yu W., Huang H. Strengthening transferability of adversarial examples by adaptive inertia and amplitude spectrum dropout. Neural Networks. 2023. vol. 165. pp. 925–937.
148. Chen Z. Robust Sparse Online Learning through Adversarial Sparsity Constraints. Proceedings of the 2024 9th IEEE International Conference on Smart Cloud (SmartCloud). 2024. pp. 42–47.
149. Liu X., Chen X., Cheng J., Zhou L., Chen L., Li C., Zu S. Simulation of Complex Geological Architectures Based on Multistage Generative Adversarial Networks Integrating with Attention Mechanism and Spectral Normalization. IEEE Transactions on Geoscience and Remote Sensing. 2023. vol. 61. pp. 1–15.
150. Ahmed S., Islam S. Methods in detection of median filtering in digital images: a survey. Multimed. Tools Appl. 2023. vol. 82. pp. 43945–43965.
151. Elderman R., Pater L.J.J., Thie A.S., Drugan M.M., Wiering M.A. Adversarial Reinforcement Learning in a Cyber Security Simulation. Proceedings of the 9th International Conference on Agents and Artificial Intelligence. 2017. pp. 559–566.
152. Ling Y., Yong Z., Pengfei W. Euclidean and Rapid Jacobian-based Saliency Maps Attacks. Proceedings of the 16th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). 2021. pp. 355–361.
153. Vorobeychik Y., Kantarcioglu M. Introduction. Adversarial Machine Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. 2018. pp. 1–4.
154. Kotenko I., Saenko I., Lauta O., Vasiliev N., Sadovnikov V. A Noise-Based Approach Augmented with Neural Cleanse and JPEG Compression to Counter Adversarial Attacks against Image Classification Systems. Proceedings of the 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP). 2025. pp. 576–583.
Опубликован
Как цитировать
Раздел
Copyright (c) Igor Kotenko, Igor Saenko, Oleg Lauta

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).