Байесовские сети доверия как вероятностная графическая модель для оценки экономических рисков
Ключевые слова:
байесовские сети доверия, экономические риски, управление рисками предприятия, операционные риски, риски управления проектамиАннотация
Реализация экономических рисков приводит к возникновению нежелательных событий, которые характеризуются возможностью нанесения экономического ущерба предприятию. Стоит задача оценки различных типов экономических рисков, ассоциированных с деятельностью предприятия, и построения систем поддержки принятия решения как на уровне предприятия в целом, так и в различных областях функционирования предприятия. В статье представлено современное состояние применения аппарата байесовских сетей доверия для оценки экономического риска и поддержки принятия решений в условиях неопределенности в контексте риск-менеджмента предприятия. Выделены дисциплины управления операционными рисками и рисками проектов.Литература
Базель II Перевод ЦБ России. URL: http://www.cbr.ru/today/ms/bn/Basel.pdf (дата обращения: 26.02.2013)
Котенко И. В., Юсупов Р. М. Перспективные направления исследований в области компьютерной безопасности // Защита информации. INSIDE. 2006. №. 2. С. 46-57
Котенко И.В., Саенко И.Б., Юсупов Р.М. Аналитический обзор докладов Международной конференции "Математические модели, методы и архитектуры для защиты компьютерных сетей"(MMM-ACNS-2010) // Труды СПИИРАН. 2010. № 13. С. 199–225
Котенко И.В., Степашкин М.В., Юсупов Р.М. Математические модели, методы и архитектуры для защиты компьютерных сетей: аналитический обзор перспектив ных направлений исследований по результатам международного семинара MMM-MMMACNS- 2005 // Труды СПИИРАН. 2006. № 3. Т. 2. С. 11–29
Суворова А.В. Подходы к представлению и обработке неопределенности данных и знаний о поведении индивидов // Труды СПИИРАН. 2012. Вып. 23. С. 206–222
Тулупьева Т.В., Тулупьев А.Л., Пащенко А.Е., Азаров А.А., Степашкин М.В. Социально-психологические факторы, влияющие на степень уязвимости пользователей автоматизированных информационных систем с точки зрения социоинженерных атак // Труды СПИИРАН. 2010. № 12. С. 200–214
Тулупьев А. Л., Николенко С. И., Сироткин А.В. Байесовские сети: логико-вероятностный подход. СПб.: Наука, 2006. 607 с.
Тулупьев А.Л., Сироткин А.В., Николенко С.И. Байесовские сети доверия: логико-вероятностный вывод в ациклических направленных графах. СПб.: Изд-во С.-Петерб. ун-та, 2009. 400 с.
Фильченков А.А. Меры истинности и вероятностные графические модели для представления знаний с неопределенностью // Труды СПИИРАН. 2012. №4. C. 254–295
Чернова Г.В., Кудрявцев А.А. Управление рисками: Учебное пособие. М.: ТК Велби, Изд-во Проспект, 2003. 160 с.
Alexander C. Bayesian Methods for Measuring Operational Risk (February 2000). Discussion Papers in Finance 2000-02. URL: http://ssrn.com/abstract=248148 or http://dx.doi.org/10.2139/ssrn.248148 (дата обращения: 26.02.2013)
Alexander C. Managing operational risks with Bayesian networks // Operational Risk: Regulation, Analysis and Management. 2003. P. 285–294
Amalberti R, Auroy Y, Berwick D, Barach P. Improving patient care: Five system barriers to achieving ultrasafe health care // Annals of Internal Medicine. 2005. 142. P. 756–764
Apostolakis G.E. How useful is quantitative risk assessment? // Risk Analysis. 2004. Vol.24, No3. P. 515–520
Aquaro V., Bardoscia M., Bellotti R., Consiglio A., De Carlo F., Ferri G. A. Bayesian Networks approach to Operational Risk // Physica A: Statistical Mechanics and its Applications. 2010. Vol. 389, No. 8. P. 1721–1728
Aven T. Risk analysis //Safety and Risk Modeling and Its Applications. 2011. P. 125–149
Bagnara S., Parlangeli O., Tartaglia R. Are hospitals becoming high reliability organizations?// Applied Ergonomics. 2010. 41(5). P. 713–718
Basel Committee on Banking Supervision. Consulting document: operational risk. URL: http://www.bis.org/publ/bcbsca07.pdf // Bank for International Settlements http://www.bis.org (official WEB-site)
Bayraktarli Y. Y., Ulfkjaer J., Yazgan U., Faber M. H. On the application of Bayesian probabilistic networks for earthquake risk management [электронный ресурс] URL: http://www.merci.ethz.ch/Publications/bayota.pdf (доступ 01.03.2013) // In 9th international conference on structural safety and reliability, Italy, Rome
Bonafede C.E., Giudici P. Bayesian networks for enterprise risk assessment // Physica A: Statistical Mechanics and its Applications. 2007. Vol. 382, issue 1. P. 22–28. Также доступно URL: http://dx.doi.org/10.1016/j.physa.2007.02.065 (дата обращения: 26.02.2013)
Borsuk M. E., Stow C. A., Reckhow K. H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis // Ecological Modelling. 2004. Vol. 173, No 2. P. 219–239
Carayon P., Wood K.E. Patient Safety: The Role of Human Factors and Systems Engineering // Stud Health Technol Inform. 2010. No 153. P. 23–46
Causal Actuarial Society. Overview of Enterprise Risk Management. URL: http://www.casact.org/area/erm/overview.pdf (дата обращения: 26.02.2013)
Chavez-Demoulin V., Embrechts P., Nešlehová J. Quantitative models for operational risk: extremes, dependence and aggregation // Journal of Banking & Finance. 2006. Т. 30, No 10. P. 2635–2658
Chin K. S., Tang D.W., Yang J.B., Wong S.Y., Wang H. Assessing new product development project risk by Bayesian network with a systematic probability generation methodology//Expert Systems with Applications. 2009. Vol. 36. No. 6. P. 9879–9890
Chulani S., Boehm B., Steece B. Bayesian analysis of empirical software engineering cost models //Software Engineering, IEEE Transactions on. 1999. Vol. 25, No 4. P. 573–583
Cooper L.G. Strategic marketing planning for radically new products // The Journal of Marketing. 2000. P. 1-16
Cornalba C., Giudici P. Statistical models for operational risk management // Physica A: Statistical Mechanics and its applications. 2004. Vol. 338, No. 1. P. 166–172
Cowell R.G., Verrall R.J., Yoon Y.K. Modeling operational risk with Bayesian networks //Journal of Risk and Insurance. 2007. Vol. 74, No 4. P. 795–827
Dubois D., Prade H. Bayesian conditioning in possibility theory // Fuzzy Sets and Systems. 1997. 92(2). P. 223–240
Dutta K., Perry J. A Tale of Tails: An Empirical Analysis of Loss Distribution Models for Estimating Operational Risk Capital // FRB of Boston. Working Paper No. 06-13. 2006. URL: http://www.bos.frb.org/economic/wp/wp2006/wp0613.htm (дата обращения: 26.02.2013)
Dantu R., Kolan P. Risk management using behavior based Bayesian networks // Intelligence and Security Informatics. 2005. P. 165-184
Dantu R., Loper K., Kolan P. Risk management using behavior based attack graphs // Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004. International Conference on. IEEE, 2004. Vol. 1. P. 445-449
Eleye-Datubo A. G., Wall A., Saajedi A., Wang J. Enabling a powerful marine and offshore decision-support solution through Bayesian network technique // Risk Analysis. 2006. 26(3). P. 695–721
Eleye‐Datubo A. G., Wall A., Wang J. Marine and Offshore Safety Assessment by Incorporative Risk Modeling in a Fuzzy‐Bayesian Network of an Induced Mass Assignment Paradigm // Risk Analysis. 2008. Vol. 28, No. 1. P. 95-112
Elidan G. Copula bayesian networks // Advances in Neural Information Processing Systems. 2010. Vol. 23. P. 559–567
Embrechts P., Höing A., Juri A. Using copulae to bound the Value-at-Risk for functions of dependent risks // Finance and Stochastics. 2003. Vol. 7, No. 2. P. 145–167
Embrechts P., Hofert M. Practices and issues in operational risk modeling under Basel II//Lithuanian mathematical journal. 2011. Vol. 51, No. 2. P. 180–193
Embrechts P., Puccetti G. Aggregating operational risk across matrix structured loss data // J. Oper. Risk. 2008. Vol. 3, No. 2. P. 29–44
European Commission et al. Directive of the European Parliament and of the Council on the taking up and pursuit of the business of insurance and reinsurance (solvency II”) // Official Journal of the European Union. 2009. L 335, Vol. 52. Также доступно URL: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:FULL:EN:PDF
Fan C.F., Yu Y.C. BBN-based software project risk management // Journal of Systems and Software. 2004. Vol. 73, No 2. P. 193–203
Fenton N., Krause P., Neil M. Software measurement: Uncertainty and causal modeling // Software, IEEE. 2002. Vol. 19, No 4. P. 116–122
Fenton N.E., Neil M. Software metrics: successes, failures and new directions // Journal of Systems and Software. 1999. Vol. 47, No 2. P. 149–157
Fenton N. E., Neil M. A critique of software defect prediction models // Software Engineering, IEEE Transactions on. 1999. Vol. 25, No 5. P. 675–689
Fenton N., Neil M., Marsh W., Hearty P., Marquez D., Krause P., Mishra R. Predicting software defects in varying development lifecycles using Bayesian nets //Information and Software Technology. – 2007. – Т. 49. – №. 1. – С. 32-43
Frachot A., Moudoulaud O., Roncalli T. Loss Distribution Approach in Practice // The Basel Handbook: A Guide for Financial Practitioners, edited by Micheal Ong, Risk Books, 2004. Available at SSRN: http://ssrn.com/abstract=1032592 (дата обращения: 26.02.2013)
Gidel T., Gautier R., Duchamp R. Decision-making framework methodology: an originalapproach to project risk management in new product design / /Journal of Engineering Design. 2005. Vol. 16, No 1. P. 1-23
Jensen F.V. Bayesian Networks and Decision Graphs. New York, USA: Springer, 2001. 268 p.
Kayis B., Arndt G., Zhou M., Savci S., Khoo Y.B., Rispler A. Risk Quantification for New Product Design and Development in a Concurrent Engineering Environment // CIRP Annals – Manufacturing Technology. 2006. Vol. 55, Iss. 1. P. 147–150
Khodakarami V., Fenton N., Neil M. Project Scheduling: Improved approach to incorporate uncertainty using Bayesian Networks // Project Management Journal. 2007. Vol. 38, No 2. P. 39–49
Kohda T., Cui W. Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network // Reliability Engineering & System Safety. 2007. Vol. 92, No 12. P. 1716–1723
Koller D., Friedman N. Probabilistic Graphical Models. Principles and Techniques. Cambridge, Massachusetts, London: MIT Press, 2009. 1231 p.
Koller D., Pfeffer A. Object-oriented Bayesian networks // Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1997. P. 302-313
Lamarque E., Karfoul H. Understanding the Operational Risk Profile of Banks: An Empirical Analysis (June 6, 2012). 29th International Conference of the French Finance Association (AFFI) 2012. URL: http://ssrn.com/abstract=2083638 or http://dx.doi.org/10.2139/ssrn.2083638
Langseth H., Portinale L. Bayesian networks in reliability // Reliability Engineering and System Safety. 2007. 92(1). P. 92–108
Léger A., Duval C., Farret R., Weber P., Levrat E., Iung B. Modeling of human and organizational impacts for system risk analyses // 9th International Probabilistic Safety Assessment and Management Conference, Hong Kong, China. 2008. [Электронный ресурс] URL: http://www.hkarms.org/ASUS_Server/psam9.sytes.netweb_resources_20080518_PSAM9/Parallel_Session/D_Harbour_III/Thu_10-12/D12_1520-1650/Modeling_of_human_and_organizational_impacts_for_system_risk_analyses.pdf(доступ 01.03.2013)
Lee E., Park Y., Shin J.G. Large engineering project risk management using a Bayesian belief network // Expert Systems with Applications. 2009. Vol. 36. No 3. P. 5880–5887
Li P. C., Chen G. H., Dai L. C., Zhang L. A fuzzy Bayesian network approach to improve the quantification of organizational influences in HRA frameworks // Safety Science. 2012. 50(7). P. 1569–1583
Li L., Wang J., Leung H., Jiang C. Assessment of catastrophic risk using bayesian network constructed from domain knowledge and spatial data // Risk Analysis. 2010. 30(7). P. 1157–1175
Mahadevan S., Zhang R., Smith N. Bayesian networks for system reliability reassessment // Structural Safety. 2001. Vol. 23, No 3. P. 231–251
McCann R. K., Marcot B. G., Ellis R. Bayesian belief networks: applications in ecology and natural resource management // Canadian Journal of Forest Research. 2006. Vol. 36, No 12. P. 3053–3062
McNeil A. J., Frey R., Embrechts P. Quantitative risk management: concepts, techniques, and tools. Princeton university press, 2005. 538 p.
de Melo A. C. V., Sanchez A. J. Software maintenance project delays prediction using Bayesian Networks // Expert Systems with Applications. 2008. Vol. 34, No 2. P. 908-919
Mikes A. Enterprise risk management in action // London School of Economics Centre for Analysis of Risk and Regulation: Discussion Paper. 2005. No 35. Также доступно URL: http://webfirstlive.lse.ac.uk/researchAndExpertise/units/CARR/pdf/DPs/Disspaper35.pdf
Monti S., Carenini G. Dealing with the expert inconsistency in probability elicitation // IEEE Transactions on Knowledge and Data Engineering. 2000. 12 (4). P. 499–508
Moosa I., Li L. An operational risk profile: the experience of British firms // Applied Economics. 2013. 45:17. P. 2491–2500. Также доступно URL: http://dx.doi.org/10.1080/00036846.2012.667556
Moses J. Bayesian probability distributions for assessing measurement of subjective software attributes // Information and Software Technology. 2000. Vol. 42, No 8. P. 533–546
Nelsen R. B. An introduction to copulas. Springer, 2006. 272 p.
Neil M., Fenton N., Tailor M. Using Bayesian networks to model expected and unexpected operational losses // Risk Analysis. 2005. Vol. 25, No 4. P. 963–972
Øien K. A framework for the establishment of organizational risk indicators // Reliability Engineering and System Safety. 2001. Vol. 74. P. 147–168
Pearl J. Probabilistic Reasoning in Intelligent Systems. NYC: Morgan Kaufmann, 1988. 552 p.
Pendharkar P. C., Subramanian G. H., Rodger J. A. A probabilistic model for predicting software development effort // Software Engineering, IEEE Transactions on. 2005. Vol. 31, No 7. P. 615–624
Pfeifer D., Neslehova J. Modeling and generating dependent risk processes for IRM and DFA // Astin Bulletin. 2004. Vol. 34, No 2. P. 333–360
Power M. The invention of operational risk // Review of International Political Economy. 2005. № 12. P. 557–599
Radlinski L. A survey of bayesian net models for software development effort prediction // International Journal of Software Engineering and Computing. 2010. Vol. 2, No 2. P. 95–109
Ren J., Wang J., Jenkinson I. Fuzzy Bayesian modelling in maritime risk analysis // GERI Annual Research Symposium. 2005
Settas D., Bibi S., Sfetsos Panagiotis, Stamelos, I., Gerogiannis, V. Using Bayesian Belief Networks to Model Software Project Management Antipatterns // Software Engineering Research, Management and Applications, 2006. Fourth International Conference on. 2006. P. 117–124. Также доступно URL: http://doi: 10.1109/SERA.2006.68
Sienou A., Lamine E., Karduck A., Pingaud, H. Conceptual model of risk: Towards a risk modelling language. // Web Information Systems Engineering–WISE 2007 Workshops. Springer Berlin/Heidelberg, 2007. P. 118–129
Sii H. S., Wang J., Eleye-Datubo A. G., Liu J., Yang J. B. Safety assessment of FPSO turret-mooring system using approximate reasoning and evidential reasoning // Journal of Marine Technology. 2005. 42(2). P. 88–102
Shenoy C., Shenoy P.P. Bayesian network models of portfolio risk and return // Computational Finance. 2000. Vol. 1999. P. 87
Sommestad T., Ekstedt M., Johnson P. A probabilistic relational model for security risk analysis // Computers & Security. 2010. Vol. 29, No 6. P. 659–679
Spiegelhalter D. J., Dawid A. P., Lauritzen S. L., Cowell R. G. Bayesian Analysis in Expert Systems // Statistical Science. 1993. Vol. 8. No 3. P. 219–247. URL: http://www.jstor.org/stable/2245959
Stamelos I., Angelis L., Dimou P., Sakellaris E. On the use of Bayesian belief networks for the prediction of software productivity // Information and Software Technology. 2003. Vol. 45, No 1. P. 51-60
Straub D. Natural hazards risk assessment using Bayesian networks //Safety and Reliability of Engineering Systems and Structures. 2005. P. 2535–2542
Trucco P., Cagno E, Ruggeri F., Grande O. A Bayesian Belief Network modeling of organizational factors in risk analysis: a case study in maritime transportation // Reliability Engineering and System Safety. 2008. No 93. P. 823–834
Uusitalo L. Advantages and challenges of Bayesian networks in environmental modelling // Ecological modelling. 2007. Vol. 203, No 3. P. 312–318
Weber P., Medina-Oliva G., Simon C., Iung B. Overview on Bayesian networks applicationsfor dependability, risk analysis and maintenance areas // Engineering Applications of Artificial Intelligence. 2012. 25(4). P. 671–682
Weick K. E., Sutcliffe K. M., Obstfeld D. Organizing for high reliability: Processes of collective mindfulness // Crisis management. 2008. Vol. 3. P. 81–123
Weidl G., Madsen A. L., Israelson S. Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes // Computers & chemical engineering. 2005. Vol. 29, No 9. P. 1996-2009
AgenaRisk [электронный ресурс] URL: http://www.agenarisk.com/ (дата обращения: 01.03.2013)
AgenaRisk Case Studies [электронный ресурс] URL: http://www.agenarisk.com/agenarisk/case_studies.shtml (дата обращения: 01.03.2013)
Котенко И. В., Юсупов Р. М. Перспективные направления исследований в области компьютерной безопасности // Защита информации. INSIDE. 2006. №. 2. С. 46-57
Котенко И.В., Саенко И.Б., Юсупов Р.М. Аналитический обзор докладов Международной конференции "Математические модели, методы и архитектуры для защиты компьютерных сетей"(MMM-ACNS-2010) // Труды СПИИРАН. 2010. № 13. С. 199–225
Котенко И.В., Степашкин М.В., Юсупов Р.М. Математические модели, методы и архитектуры для защиты компьютерных сетей: аналитический обзор перспектив ных направлений исследований по результатам международного семинара MMM-MMMACNS- 2005 // Труды СПИИРАН. 2006. № 3. Т. 2. С. 11–29
Суворова А.В. Подходы к представлению и обработке неопределенности данных и знаний о поведении индивидов // Труды СПИИРАН. 2012. Вып. 23. С. 206–222
Тулупьева Т.В., Тулупьев А.Л., Пащенко А.Е., Азаров А.А., Степашкин М.В. Социально-психологические факторы, влияющие на степень уязвимости пользователей автоматизированных информационных систем с точки зрения социоинженерных атак // Труды СПИИРАН. 2010. № 12. С. 200–214
Тулупьев А. Л., Николенко С. И., Сироткин А.В. Байесовские сети: логико-вероятностный подход. СПб.: Наука, 2006. 607 с.
Тулупьев А.Л., Сироткин А.В., Николенко С.И. Байесовские сети доверия: логико-вероятностный вывод в ациклических направленных графах. СПб.: Изд-во С.-Петерб. ун-та, 2009. 400 с.
Фильченков А.А. Меры истинности и вероятностные графические модели для представления знаний с неопределенностью // Труды СПИИРАН. 2012. №4. C. 254–295
Чернова Г.В., Кудрявцев А.А. Управление рисками: Учебное пособие. М.: ТК Велби, Изд-во Проспект, 2003. 160 с.
Alexander C. Bayesian Methods for Measuring Operational Risk (February 2000). Discussion Papers in Finance 2000-02. URL: http://ssrn.com/abstract=248148 or http://dx.doi.org/10.2139/ssrn.248148 (дата обращения: 26.02.2013)
Alexander C. Managing operational risks with Bayesian networks // Operational Risk: Regulation, Analysis and Management. 2003. P. 285–294
Amalberti R, Auroy Y, Berwick D, Barach P. Improving patient care: Five system barriers to achieving ultrasafe health care // Annals of Internal Medicine. 2005. 142. P. 756–764
Apostolakis G.E. How useful is quantitative risk assessment? // Risk Analysis. 2004. Vol.24, No3. P. 515–520
Aquaro V., Bardoscia M., Bellotti R., Consiglio A., De Carlo F., Ferri G. A. Bayesian Networks approach to Operational Risk // Physica A: Statistical Mechanics and its Applications. 2010. Vol. 389, No. 8. P. 1721–1728
Aven T. Risk analysis //Safety and Risk Modeling and Its Applications. 2011. P. 125–149
Bagnara S., Parlangeli O., Tartaglia R. Are hospitals becoming high reliability organizations?// Applied Ergonomics. 2010. 41(5). P. 713–718
Basel Committee on Banking Supervision. Consulting document: operational risk. URL: http://www.bis.org/publ/bcbsca07.pdf // Bank for International Settlements http://www.bis.org (official WEB-site)
Bayraktarli Y. Y., Ulfkjaer J., Yazgan U., Faber M. H. On the application of Bayesian probabilistic networks for earthquake risk management [электронный ресурс] URL: http://www.merci.ethz.ch/Publications/bayota.pdf (доступ 01.03.2013) // In 9th international conference on structural safety and reliability, Italy, Rome
Bonafede C.E., Giudici P. Bayesian networks for enterprise risk assessment // Physica A: Statistical Mechanics and its Applications. 2007. Vol. 382, issue 1. P. 22–28. Также доступно URL: http://dx.doi.org/10.1016/j.physa.2007.02.065 (дата обращения: 26.02.2013)
Borsuk M. E., Stow C. A., Reckhow K. H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis // Ecological Modelling. 2004. Vol. 173, No 2. P. 219–239
Carayon P., Wood K.E. Patient Safety: The Role of Human Factors and Systems Engineering // Stud Health Technol Inform. 2010. No 153. P. 23–46
Causal Actuarial Society. Overview of Enterprise Risk Management. URL: http://www.casact.org/area/erm/overview.pdf (дата обращения: 26.02.2013)
Chavez-Demoulin V., Embrechts P., Nešlehová J. Quantitative models for operational risk: extremes, dependence and aggregation // Journal of Banking & Finance. 2006. Т. 30, No 10. P. 2635–2658
Chin K. S., Tang D.W., Yang J.B., Wong S.Y., Wang H. Assessing new product development project risk by Bayesian network with a systematic probability generation methodology//Expert Systems with Applications. 2009. Vol. 36. No. 6. P. 9879–9890
Chulani S., Boehm B., Steece B. Bayesian analysis of empirical software engineering cost models //Software Engineering, IEEE Transactions on. 1999. Vol. 25, No 4. P. 573–583
Cooper L.G. Strategic marketing planning for radically new products // The Journal of Marketing. 2000. P. 1-16
Cornalba C., Giudici P. Statistical models for operational risk management // Physica A: Statistical Mechanics and its applications. 2004. Vol. 338, No. 1. P. 166–172
Cowell R.G., Verrall R.J., Yoon Y.K. Modeling operational risk with Bayesian networks //Journal of Risk and Insurance. 2007. Vol. 74, No 4. P. 795–827
Dubois D., Prade H. Bayesian conditioning in possibility theory // Fuzzy Sets and Systems. 1997. 92(2). P. 223–240
Dutta K., Perry J. A Tale of Tails: An Empirical Analysis of Loss Distribution Models for Estimating Operational Risk Capital // FRB of Boston. Working Paper No. 06-13. 2006. URL: http://www.bos.frb.org/economic/wp/wp2006/wp0613.htm (дата обращения: 26.02.2013)
Dantu R., Kolan P. Risk management using behavior based Bayesian networks // Intelligence and Security Informatics. 2005. P. 165-184
Dantu R., Loper K., Kolan P. Risk management using behavior based attack graphs // Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004. International Conference on. IEEE, 2004. Vol. 1. P. 445-449
Eleye-Datubo A. G., Wall A., Saajedi A., Wang J. Enabling a powerful marine and offshore decision-support solution through Bayesian network technique // Risk Analysis. 2006. 26(3). P. 695–721
Eleye‐Datubo A. G., Wall A., Wang J. Marine and Offshore Safety Assessment by Incorporative Risk Modeling in a Fuzzy‐Bayesian Network of an Induced Mass Assignment Paradigm // Risk Analysis. 2008. Vol. 28, No. 1. P. 95-112
Elidan G. Copula bayesian networks // Advances in Neural Information Processing Systems. 2010. Vol. 23. P. 559–567
Embrechts P., Höing A., Juri A. Using copulae to bound the Value-at-Risk for functions of dependent risks // Finance and Stochastics. 2003. Vol. 7, No. 2. P. 145–167
Embrechts P., Hofert M. Practices and issues in operational risk modeling under Basel II//Lithuanian mathematical journal. 2011. Vol. 51, No. 2. P. 180–193
Embrechts P., Puccetti G. Aggregating operational risk across matrix structured loss data // J. Oper. Risk. 2008. Vol. 3, No. 2. P. 29–44
European Commission et al. Directive of the European Parliament and of the Council on the taking up and pursuit of the business of insurance and reinsurance (solvency II”) // Official Journal of the European Union. 2009. L 335, Vol. 52. Также доступно URL: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:FULL:EN:PDF
Fan C.F., Yu Y.C. BBN-based software project risk management // Journal of Systems and Software. 2004. Vol. 73, No 2. P. 193–203
Fenton N., Krause P., Neil M. Software measurement: Uncertainty and causal modeling // Software, IEEE. 2002. Vol. 19, No 4. P. 116–122
Fenton N.E., Neil M. Software metrics: successes, failures and new directions // Journal of Systems and Software. 1999. Vol. 47, No 2. P. 149–157
Fenton N. E., Neil M. A critique of software defect prediction models // Software Engineering, IEEE Transactions on. 1999. Vol. 25, No 5. P. 675–689
Fenton N., Neil M., Marsh W., Hearty P., Marquez D., Krause P., Mishra R. Predicting software defects in varying development lifecycles using Bayesian nets //Information and Software Technology. – 2007. – Т. 49. – №. 1. – С. 32-43
Frachot A., Moudoulaud O., Roncalli T. Loss Distribution Approach in Practice // The Basel Handbook: A Guide for Financial Practitioners, edited by Micheal Ong, Risk Books, 2004. Available at SSRN: http://ssrn.com/abstract=1032592 (дата обращения: 26.02.2013)
Gidel T., Gautier R., Duchamp R. Decision-making framework methodology: an originalapproach to project risk management in new product design / /Journal of Engineering Design. 2005. Vol. 16, No 1. P. 1-23
Jensen F.V. Bayesian Networks and Decision Graphs. New York, USA: Springer, 2001. 268 p.
Kayis B., Arndt G., Zhou M., Savci S., Khoo Y.B., Rispler A. Risk Quantification for New Product Design and Development in a Concurrent Engineering Environment // CIRP Annals – Manufacturing Technology. 2006. Vol. 55, Iss. 1. P. 147–150
Khodakarami V., Fenton N., Neil M. Project Scheduling: Improved approach to incorporate uncertainty using Bayesian Networks // Project Management Journal. 2007. Vol. 38, No 2. P. 39–49
Kohda T., Cui W. Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network // Reliability Engineering & System Safety. 2007. Vol. 92, No 12. P. 1716–1723
Koller D., Friedman N. Probabilistic Graphical Models. Principles and Techniques. Cambridge, Massachusetts, London: MIT Press, 2009. 1231 p.
Koller D., Pfeffer A. Object-oriented Bayesian networks // Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1997. P. 302-313
Lamarque E., Karfoul H. Understanding the Operational Risk Profile of Banks: An Empirical Analysis (June 6, 2012). 29th International Conference of the French Finance Association (AFFI) 2012. URL: http://ssrn.com/abstract=2083638 or http://dx.doi.org/10.2139/ssrn.2083638
Langseth H., Portinale L. Bayesian networks in reliability // Reliability Engineering and System Safety. 2007. 92(1). P. 92–108
Léger A., Duval C., Farret R., Weber P., Levrat E., Iung B. Modeling of human and organizational impacts for system risk analyses // 9th International Probabilistic Safety Assessment and Management Conference, Hong Kong, China. 2008. [Электронный ресурс] URL: http://www.hkarms.org/ASUS_Server/psam9.sytes.netweb_resources_20080518_PSAM9/Parallel_Session/D_Harbour_III/Thu_10-12/D12_1520-1650/Modeling_of_human_and_organizational_impacts_for_system_risk_analyses.pdf(доступ 01.03.2013)
Lee E., Park Y., Shin J.G. Large engineering project risk management using a Bayesian belief network // Expert Systems with Applications. 2009. Vol. 36. No 3. P. 5880–5887
Li P. C., Chen G. H., Dai L. C., Zhang L. A fuzzy Bayesian network approach to improve the quantification of organizational influences in HRA frameworks // Safety Science. 2012. 50(7). P. 1569–1583
Li L., Wang J., Leung H., Jiang C. Assessment of catastrophic risk using bayesian network constructed from domain knowledge and spatial data // Risk Analysis. 2010. 30(7). P. 1157–1175
Mahadevan S., Zhang R., Smith N. Bayesian networks for system reliability reassessment // Structural Safety. 2001. Vol. 23, No 3. P. 231–251
McCann R. K., Marcot B. G., Ellis R. Bayesian belief networks: applications in ecology and natural resource management // Canadian Journal of Forest Research. 2006. Vol. 36, No 12. P. 3053–3062
McNeil A. J., Frey R., Embrechts P. Quantitative risk management: concepts, techniques, and tools. Princeton university press, 2005. 538 p.
de Melo A. C. V., Sanchez A. J. Software maintenance project delays prediction using Bayesian Networks // Expert Systems with Applications. 2008. Vol. 34, No 2. P. 908-919
Mikes A. Enterprise risk management in action // London School of Economics Centre for Analysis of Risk and Regulation: Discussion Paper. 2005. No 35. Также доступно URL: http://webfirstlive.lse.ac.uk/researchAndExpertise/units/CARR/pdf/DPs/Disspaper35.pdf
Monti S., Carenini G. Dealing with the expert inconsistency in probability elicitation // IEEE Transactions on Knowledge and Data Engineering. 2000. 12 (4). P. 499–508
Moosa I., Li L. An operational risk profile: the experience of British firms // Applied Economics. 2013. 45:17. P. 2491–2500. Также доступно URL: http://dx.doi.org/10.1080/00036846.2012.667556
Moses J. Bayesian probability distributions for assessing measurement of subjective software attributes // Information and Software Technology. 2000. Vol. 42, No 8. P. 533–546
Nelsen R. B. An introduction to copulas. Springer, 2006. 272 p.
Neil M., Fenton N., Tailor M. Using Bayesian networks to model expected and unexpected operational losses // Risk Analysis. 2005. Vol. 25, No 4. P. 963–972
Øien K. A framework for the establishment of organizational risk indicators // Reliability Engineering and System Safety. 2001. Vol. 74. P. 147–168
Pearl J. Probabilistic Reasoning in Intelligent Systems. NYC: Morgan Kaufmann, 1988. 552 p.
Pendharkar P. C., Subramanian G. H., Rodger J. A. A probabilistic model for predicting software development effort // Software Engineering, IEEE Transactions on. 2005. Vol. 31, No 7. P. 615–624
Pfeifer D., Neslehova J. Modeling and generating dependent risk processes for IRM and DFA // Astin Bulletin. 2004. Vol. 34, No 2. P. 333–360
Power M. The invention of operational risk // Review of International Political Economy. 2005. № 12. P. 557–599
Radlinski L. A survey of bayesian net models for software development effort prediction // International Journal of Software Engineering and Computing. 2010. Vol. 2, No 2. P. 95–109
Ren J., Wang J., Jenkinson I. Fuzzy Bayesian modelling in maritime risk analysis // GERI Annual Research Symposium. 2005
Settas D., Bibi S., Sfetsos Panagiotis, Stamelos, I., Gerogiannis, V. Using Bayesian Belief Networks to Model Software Project Management Antipatterns // Software Engineering Research, Management and Applications, 2006. Fourth International Conference on. 2006. P. 117–124. Также доступно URL: http://doi: 10.1109/SERA.2006.68
Sienou A., Lamine E., Karduck A., Pingaud, H. Conceptual model of risk: Towards a risk modelling language. // Web Information Systems Engineering–WISE 2007 Workshops. Springer Berlin/Heidelberg, 2007. P. 118–129
Sii H. S., Wang J., Eleye-Datubo A. G., Liu J., Yang J. B. Safety assessment of FPSO turret-mooring system using approximate reasoning and evidential reasoning // Journal of Marine Technology. 2005. 42(2). P. 88–102
Shenoy C., Shenoy P.P. Bayesian network models of portfolio risk and return // Computational Finance. 2000. Vol. 1999. P. 87
Sommestad T., Ekstedt M., Johnson P. A probabilistic relational model for security risk analysis // Computers & Security. 2010. Vol. 29, No 6. P. 659–679
Spiegelhalter D. J., Dawid A. P., Lauritzen S. L., Cowell R. G. Bayesian Analysis in Expert Systems // Statistical Science. 1993. Vol. 8. No 3. P. 219–247. URL: http://www.jstor.org/stable/2245959
Stamelos I., Angelis L., Dimou P., Sakellaris E. On the use of Bayesian belief networks for the prediction of software productivity // Information and Software Technology. 2003. Vol. 45, No 1. P. 51-60
Straub D. Natural hazards risk assessment using Bayesian networks //Safety and Reliability of Engineering Systems and Structures. 2005. P. 2535–2542
Trucco P., Cagno E, Ruggeri F., Grande O. A Bayesian Belief Network modeling of organizational factors in risk analysis: a case study in maritime transportation // Reliability Engineering and System Safety. 2008. No 93. P. 823–834
Uusitalo L. Advantages and challenges of Bayesian networks in environmental modelling // Ecological modelling. 2007. Vol. 203, No 3. P. 312–318
Weber P., Medina-Oliva G., Simon C., Iung B. Overview on Bayesian networks applicationsfor dependability, risk analysis and maintenance areas // Engineering Applications of Artificial Intelligence. 2012. 25(4). P. 671–682
Weick K. E., Sutcliffe K. M., Obstfeld D. Organizing for high reliability: Processes of collective mindfulness // Crisis management. 2008. Vol. 3. P. 81–123
Weidl G., Madsen A. L., Israelson S. Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes // Computers & chemical engineering. 2005. Vol. 29, No 9. P. 1996-2009
AgenaRisk [электронный ресурс] URL: http://www.agenarisk.com/ (дата обращения: 01.03.2013)
AgenaRisk Case Studies [электронный ресурс] URL: http://www.agenarisk.com/agenarisk/case_studies.shtml (дата обращения: 01.03.2013)
Опубликован
2013-04-01
Как цитировать
Мусина, В. Ф. (2013). Байесовские сети доверия как вероятностная графическая модель для оценки экономических рисков. Труды СПИИРАН, 2(25), 235-254. https://doi.org/10.15622/sp.25.12
Раздел
Статьи
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями:
Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале.
Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале.
Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).