Комплексный анализ многоканальных MAC-протоколов и кластерных протоколов для создания надежных и энергоэффективных беспроводных сенсорных сетей
Ключевые слова:
беспроводные сенсорные сети (WSN), протоколы многоканального управления доступом к среде (MAC), кластерные протоколы, безопасность, энергоэффективностьАннотация
Беспроводные сенсорные сети (WSN) стали незаменимыми в различных областях применения, от мониторинга окружающей среды до отслеживания состояния здоровья. По мере их развития вопросы безопасности и энергоэффективности остаются приоритетными. В данной аналитической работе проводится сравнение современных методов в рамках двух ключевых категорий протоколов: многоканальных протоколов управления доступом к среде (MAC) и кластерных протоколов. Оценка сосредоточена на различных стратегиях назначения каналов и методах кластеризации, включая статическое и динамическое распределение ресурсов связи, адаптивные методологии и гибридные подходы, а также стратегии выбора и ротации кластерных голов и эффективного агрегирования данных. С помощью комплексного исследования мы выделяем ограничения и потенциал каждого подхода, предлагая гибридную структуру, которая объединяет преимущества обоих типов протоколов для повышения безопасности и энергоэффективности в беспроводных сенсорных сетях. Результаты исследования показывают, что интеграция динамического распределения ресурсов с энергоэффективной кластеризацией и адаптивными стратегиями с ротацией кластерных голов может привести к более надежным и эффективным развертываниям. Данный анализ служит основой для будущих исследований, направленных на разработку усовершенствованных гибридных протоколов, которые отвечают динамическим требованиям WSN, обеспечивая устойчивую и эффективную работу сети.
Литература
2. Raj V.P., Duraipandian M. Energy conservation using PISAE and cross-layer-based opportunistic routing protocol (CORP) for wireless sensor network. Engineering Science and Technology, an International Journal. 2023. vol. 42.
3. Duy Tan N., Nguyen D.N., Hoang H.N., Le T.T.H. EEGT: Energy efficient grid-based routing protocol in wireless sensor networks for IoT applications. Computers. 2023. vol. 12(5).
4. Abdulai J.D., Adu-Manu K.S., Katsriku F.A., Engmann F. A modified distance-based energy-aware (mDBEA) routing protocol in wireless sensor networks (WSNs). Journal of Ambient Intelligence and Humanized Computing. 2023. vol. 14(8). pp. 10195–10217.
5. Manikandan A., Venkataramanan C., Dhanapal R. A score based link delay aware routing protocol to improve energy optimization in wireless sensor network. Journal of Engineering Research. 2023. vol. 11(4). pp. 404–413.
6. Gururaj H.L., Natarajan R., Almujally N.A., Flammini F., Krishna S., Gupta, S.K. Collaborative energy-efficient routing protocol for sustainable communication in 5G/6G wireless sensor networks. IEEE Open Journal of the Communications Society. 2023. pp. 2050–2061.
7. Narayan V., Daniel A.K., Chaturvedi P. E-FEERP: Enhanced fuzzy based energy efficient routing protocol for wireless sensor network. Wireless Personal Communications. 2023. vol. 131(1). pp. 371–398. DOI: 10.1007/s11277-023-10434-z.
8. Hemanand D., Senthilkumar C., Saleh O.S., Muthuraj B., Anand A., Velmurugan V. Analysis of power optimization and enhanced routing protocols for wireless sensor networks. Measurement: Sensors. 2023. vol. 25. DOI: 10.1016/j.measen.2022.100610.
9. Sharma A., Babbar H., Rani S., Sah D.K., Sehar S., Gianini G. MHSEER: a meta-heuristic secure and energy-efficient routing protocol for wireless sensor network-based industrial IoT. Energies. 2023. vol. 16(10). DOI: 10.3390/en16104198.
10. Verma C.P. Enhancing Parameters of LEACH Protocol for Efficient Routing in Wireless Sensor Networks. Journal of Computers, Mechanical and Management. 2023. vol. 2(1). pp. 30–34. DOI: 10.57159/gadl.jcmm.2.1.23040.
11. Li G., Peng S., Wang C., Niu J., Yuan Y. An energy-efficient data collection scheme using denoising autoencoder in wireless sensor networks. Tsinghua Science and Technology. 2019. vol. 24(1). pp. 86–96. DOI: 10.26599/TST.2018.9010002.
12. Panchal A., Singh R.K. EEHCHR: Energy efficient hybrid clustering and hierarchical routing for wireless sensor networks. Ad Hoc Netw. 2021. vol. 123. DOI: 10.1016/j.adhoc.2021.102692.
13. Wang J., Han H., Li H., He S., Sharma P.K., Chen L. Multiple strategies differential privacy on sparse tensor factorization for network traffic analysis in 5G, IEEE Trans. Ind. Inform. 2022. vol. 18(3). pp. 1939–1948. DOI: 10.1109/TII.2021.3082576.
14. Cao D., Zheng B., Ji B., et al. A robust distance-based relay selection for message dissemination in vehicular network, Wirel. Netw. 2018. vol. 26. pp. 1755–1771. DOI: 10.1007/s11276-018-1863-4.
15. Raja S.P., Rajkumar T.D., Raj V. Internet of things: Challenges, issues and applications, J. Circuits Syst. Comput. 2018. vol. 27. DOI: 10.1142/S0218126618300076.
16. Chandramohan K., Manikandan A., Ramalingam S., Dhanapal R. Performance evaluation of VANET using Directional Location Aided Routing (D-LAR) protocol with sleep scheduling algorithm. Ain Shams Eng. J. 2024. vol. 15(3). DOI: 10.1016/j.asej.2023.102458.
17. Premakumari S.B.N., Mohan P., Subramanian K. An enhanced localization approach for energy conservation in wireless sensor network with Q deep learning algorithm. Symmetry. 2022. vol. 14. DOI: 10.3390/sym14122515.
18. Lilhore U.K., Khalaf O.I., Simaiya S., Tavera Romero C.A., Abdulsahib G.M., Poongodi M., Kumar D. A depth-controlled and energy-efficient routing protocol for underwater wireless sensor networks. International Journal of Distributed Sensor Networks. 2022. vol. 18. no. 9. DOI: 10.1177/15501329221117118.
19. Karpagalakshmi R.C., Vijayalakshmi P., Gowsic K., Rathi R. An effective traffic management system using Connected Dominating Set Forwarding (CDSF) framework for reducing traffic congestion in high density VANETs. Wirel. Pers. Commun. 2021. vol. 119(3). pp. 2725–2754.
20. Manikandan A., Madhu G.C., Flora G.D., et al. Hybrid advisory weight based dynamic scheduling framework to ensure effective communication using acknowledgement during encounter strategy in Ad-hoc network. Int. J. Inf. Tecnol. 2023. vol. 15. pp. 4521–4527. DOI: 10.1007/s41870-023-01421-5.
21. Elbhiri B, Saadane R, El Fkihiand S, Aboutajdine D. Developed Distributed Energy-Efficient Clustering (DDEEC) for heterogeneous wireless sensor networks. I/V Communications and Mobile Network (ISVC). 5th International Symposium on I/V Communications and Mobile Network. 2010. 1-4. DOI: 10.1109/ISVC.2010.5656252.
22. Saini P., Sharma A.K. E-DEEC – Enhanced Distributed Energy Efficient Clustering Scheme for heterogeneous WSN. 1st International Conference on Parallel, Distributed and Grid Computing. 2010. pp. 205–210. DOI: 10.1109/PDGC.2010.5679898.
23. Saini P., Sharma A.K. Energy Efficient Scheme for Clustering Protocol Prolonging the Lifetime of Heterogeneous Wireless Sensor Networks. International Journal of Computer Applications. 2010. vol. 6(2). pp. 30–36.
24. Javaid N., Qureshi T.N., Khan A.H., Iqbal A., Akhtar E., Ishfaq M. EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Wireless Sensor Networks. Procedia Computer Science. 2013. vol. 19. pp. 914–919.
25. Jibreel F. Improved Developed Distributed Energy-Efficient Clustering Scheme (iDDEEC). International Journal of Innovative Science and Research Technology. 2018. vol. 3(12). pp. 564–567.
26. Jibreel F., Daabo M.I., Yusuf-Asaju A.W., Gbolagade K.A. Servant-MODLEACH Energy Efficient Cluster Based Routing Protocol for Large Scale Wireless Sensor Network. The 12th International MultiConference on ICT Applications. 2018. vol. 12. pp. 1–6.
27. Jibreel F. Gateway–based Threshold Distributed Energy Efficient Clustering (G-TDEEC). International Journal of Computer Applications. 2019. vol. 182(42). pp. 43–46.
28. Smaragdakis G, Matta I, Bestavros A. SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. Proceeding of the International Workshop on Sensor and Actor Network Protocols and Applications. 2004. no. 4. pp. 660–670.
29. Kosunalp S., Acik S. Medium Access Control Layer for Internet of Things Edge-Side Network Using Carrier-Sense Multiple Access Protocol. Engineering Proceedings. 2024. vol. 70(1).
30. Ahmad S.S., Al‐Raweshidy H., Nilavalan R. Investigating delay of the media access control protocols for IoT‐RoF using quantum entanglement. IET Networks. 2024. vol. 13(4). pp. 324–337.
31. Beltramelli L., Mahmood A., Osterberg P., Gidlund M. LoRa beyond ALOHA: An investigation of alternative random access protocols. IEEE Transactions on Industrial Informatics. 2020. vol. 17(5). pp. 3544–3554.
32. Nagaraju S., Gudino L.J., Sood N., Chandran J.G., Sreejith V. Multiple token‐based neighbor discovery for directional sensor networks. ETRI Journal. 2020. vol. 42(3). pp. 351–365.
33. Dhabliya D., Soundararajan R., Selvarasu P., Balasubramaniam M.S., Rajawat A.S., Goyal S.B., Raboaca M.S., Mihaltan T.C., Suciu G. Energy-efficient network protocols and resilient data transmission schemes for wireless sensor Networks – An experimental survey. Energies. 2022. vol. 15(23). DOI: 10.3390/en15238883.
34. Azad M.A.K., Ngo C.T., Oh H. A two-channel slotted sense multiple access protocol for timely and reliable data transmission in industrial wireless sensor networks. International Journal of Distributed Sensor Networks. 2020. vol. 16(4). DOI: 10.1177/1550147720902007.
35. Rambabu C., Prasad, V.V.K.D.V., Prasad K.S. Multipath cluster-based hybrid MAC protocol for wireless sensor networks. International Journal of Wireless and Microwave Technologies (IJWMT). 2020. vol. 10(1). pp. 1–16.
36. Alam M.I.I., Hossain M.F., Munasinghe K., Jamalipour A. MAC protocol for underwater sensor networks using EM wave with TDMA based control channel. IEEE Access. 2020. vol. 8. pp. 168439–168455.
37. Arafath M.S., Qamar S., Khan K.U.R., Sunitha, K.V.N. Analysis of Power in Medium Access Control Code Division Multiple Access Protocol for Data Collection in a Wireless Sensor Network. Innovations in Electronics and Communication Engineering: Proceedings of the 8th ICIECE 2019. 2020. pp. 39–50.
38. Ouadou M., Mafamane R., Minaoui K. A Hybrid Anti-Collision Protocol Based on Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) for Radio Frequency Identification (RFID) Readers. Network. 2024. vol. 4(2). pp. 217–236.
39. Li D., Nakazato J., Tsukada M. A State-Interactive MAC Layer TDMA Protocol Based on Smart Antennas. Electronics. 2024. vol. 13(11).
40. Longla T.T., Shah A.S., Rabie K.M., Li X. S-LEACH-CDMA: Sectoring and CDMA Integration with LEACH for Scalability and Energy Efficiency in Wireless Sensor Networks. Authorea Preprints. 2024.
41. Maeng J., Dahouda M.K., Joe I. Optimal power allocation with sectored cells for sum-throughput maximization in wireless-powered communication networks based on hybrid SDMA/NOMA. Electronics. 2022. vol. 11(6).
42. Peng M., Li B., Yan Z., Yang M. A spatial group-based multi-user full-duplex OFDMA MAC protocol for the next-generation WLAN. Sensors. 2020. vol. 20(14).
43. Ghosh S., Al-Dweik A., Alouini M.S. On the performance of end-to-end cooperative NOMA-based IoT networks with wireless energy harvesting. IEEE Internet of Things Journal. 2023. vol. 10(18). pp. 16253–16270.
44. Esmaiel H., Sun H. Energy Harvesting for TDS-OFDM in NOMA-Based Underwater Communication Systems. Sensors. 2022. vol. 22(15). DOI: 10.3390/s22155751.
45. Pandi V.S., Prasina A., Shibu S., Sripriya T. A Novel Downlink Frequency Allocation (DFA) Technique for Enhanced Throughput in 5G and Beyond (B5G) Multi-hop Networks. Traitement du Signal. 2024. vol. 41(3). pp. 1345–1354.
46. Yu N., Zhang L., Ren Y. BRS-based robust secure localization algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks. 2013. vol. 9(3). DOI: 10.1155/2013/107024.
47. Mestres A., Abadal S., Torrellas J., Alarcon E., Cabellos-Aparicio A. A MAC protocol for reliable broadcast communications in wireless network-on-chip. Proceedings of the 9th International Workshop on Network on Chip Architectures. 2016. pp. 21–26. DOI: 10.1145/2994133.2994137.
48. Li X., Xiao F., Tang K., Luo E. Outage performance and energy efficiency optimization of wireless-powered millimeter-wave sensor networks. EURASIP Journal on Wireless Communications and Networking. 2024. vol. 2024(1). DOI: 10.1186/s13638-023-02328-2.
49. Gulyamov S., Yusupbekov A., Mirzaev D., Kuziev Z. Algorithms for composing communication protocols of wireless sensor networks with random access. E3S Web of Conferences. 2023. vol. 417.
50. Dhabliya D., Soundararajan R., Selvarasu P., Balasubramaniam M.S., Rajawat A.S., Goyal S.B., Raboaca M.S., Mihaltan T.C., Verma C., Suciu G. Energy-efficient network protocols and resilient data transmission schemes for wireless sensor Networks – An experimental survey. Energies. 2022. vol. 15(23). DOI: 10.3390/en15238883.
51. Thahniyath G., Jayaprasad M. Secure and load balanced routing model for wireless sensor networks. Journal of King Saud University-Computer and Information Sciences. 2022. vol. 34(7). pp. 4209–4218.
52. Ndoye E.H.M., Diallo O., Hakem N., Jacquet F., Misson M., Rodrigues J.J. Interference‐aware clustering approach improving QoS for linear WSNs using a token‐based MAC protocol. International Journal of Communication Systems. 2020. vol. 33(11).
53. Nagaraju S., Gudino L.J., Sood N., Chandran J.G., Sreejith V. Multiple token‐based neighbor discovery for directional sensor networks. ETRI Journal. 2020. vol. 42(3). pp. 351–365.
54. Mundada M.R., Kiran S., Khobanna S., Varsha R.N., George S.A. A study on energy efficient routing protocols in wireless sensor networks. International Journal of Distributed and Parallel Systems (IJDPS). 2012. vol. 3. pp. 311–330.
55. Anees J., Zhang H.C., Lougou B.G., Baig S., Dessie Y.G. Delay aware energy-efficient opportunistic node selection in restricted routing. Computer Networks. 2020. vol. 181.
56. Lee D., Attias R., Puri A., Sengupta R., Tripakis S., Varaiya P. A wireless token ring protocol for intelligent transportation systems. IEEE Intelligent Transportation Systems. Proceedings (ITSC 2001). IEEE, 2001. pp. 1152–1157.
57. Hang Z., Bo L., Zhongjiang Y., Mao Y., Xinru L. A multi-token sector antenna neighbor discovery protocol for directional ad hoc networks. China Communications. 2024.
58. Maurya S., Gupta V., Jain V.K. Lbrr: Load balanced ring routing protocol for heterogeneous sensor networks with sink mobility. IEEE wireless communications and networking Conference (WCNC). IEEE, 2017. pp. 1–6.
59. Cevik T., Zaim A.H. EETBR: Energy efficient token-based routing for wireless sensor networks. Turkish Journal of Electrical Engineering and Computer Sciences. 2013. vol. 21(2). pp. 513–526.
60. Han B., Ran F., Li J., Yan L., Shen H., Li A. A novel adaptive cluster based routing protocol for energy-harvesting wireless sensor networks. Sensors. 2022. vol. 22(4).
61. Qureshi K.N., Bashir M.U., Lloret J., Leon A. Optimized cluster‐based dynamic energy‐aware routing protocol for wireless sensor networks in agriculture precision. Journal of sensors. 2020. vol. 2020(1).
62. Hu H., Fan X., Wang C. Efficient cluster-based routing protocol for wireless sensor networks by using collaborative-inspired Harris Hawk optimization and fuzzy logic. Plos one. 2024. vol. 19(4).
63. Wang H., Liu K., Wang C., Hu H. Energy-Efficient, Cluster-Based Routing Protocol for Wireless Sensor Networks Using Fuzzy Logic and Quantum Annealing Algorithm. Sensors. 2024. vol. 24(13).
64. El Habib Kahla M., Beggas M., Laouid A., Hammoudeh M. A Nature-Inspired Partial Distance-Based Clustering Algorithm. Journal of Sensor and Actuator Networks. 2024. vol. 13(4).
65. Sundararajan R.K., Jayaraman G., Arunkumar S., Jeyapandian M., Kaliyaperumal K., Perumal D., Dhulipala V.S. EECAS: Energy Efficient Clustering and Aggregator Node Selection for Wireless Sensor Networks. Wireless Personal Communications. 2024. vol. 136. pp. 899–919.
66. Preetha M., Anil Kumar N., Elavarasi K., Vignesh T., Nagaraju V. A Hybrid Clustering Approach Based Q-Leach in TDMA to Optimize QOS-Parameters. Wireless Personal Communications. 2022. pp. 1–32.
67. Akila E., Deepa B. An Comparison of Different Cluster Head Selection Techniques for Wireless Sensor Network. Communications on Applied Nonlinear Analysis. 2024. vol. 31(5s). pp. 479–486.
68. Tay M., Senturk A. A new energy-aware cluster head selection algorithm for wireless sensor networks. Wireless Personal Communications. 2022. vol. 122(3). pp. 2235–2251.
69. Sen S., Sahoo L., Ghosh S.L. Lifetime extension of wireless sensor networks by perceptive selection of cluster head using K-Means and Einstein weighted averaging aggregation operator under uncertainty. J. Ind Intell. 2024. vol. 2(1). pp. 54–62.
70. Ahmad R., Wazirali R., Bsoul Q., Abu-Ain T., Abu-Ain W. Feature-selection and mutual-clustering approaches to improve DoS detection and maintain WSNs’ lifetime. Sensors. 2021. vol. 21(14).
71. Begum B.A., Nandury S.V. Data aggregation protocols for WSN and IoT applications – A comprehensive survey. Journal of King Saud University-Computer and Information Sciences. 2023. vol. 35(2). pp. 651–681.
72. Jan S.R.U., Khan R., Jan M.A. An energy-efficient data aggregation approach for cluster-based wireless sensor networks. Annals of telecommunications. 2021. vol. 76(5). pp. 321–329.
73. Sharmin S., Ahmedy I., Md Noor R. An energy-efficient data aggregation clustering algorithm for wireless sensor Networks using hybrid PSO. Energies. 2023. vol. 16(5).
74. Sreedevi P., Venkateswarlu S. An Efficient Intra‐Cluster Data Aggregation and finding the Best Sink location in WSN using EEC‐MA‐PSOGA approach. International Journal of Communication Systems. 2022. vol. 35(8).
75. Khedr A.M., Raj P.P., Al Ali A. An Energy-Efficient Data Acquisition Technique for Hierarchical Cluster-Based Wireless Sensor Networks. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 2020. vol. 11(3). pp. 70–86.
76. Jawaligi S.S. ACRDA: An adaptive combined relay based dynamic data aggregation technique for wireless sensor networks. Measurement: Sensors. 2022. vol. 24.
Опубликован
Как цитировать
Раздел
Copyright (c) Sushma P. Pawale, Unknown

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).