Концепция обработки, анализа и визуализации геофизических данных на основе элементов тензорного исчисления
Ключевые слова:
тензорные поля, тензорное исчисление, геоинформационные технологии, глифы, суперэллипсыАннотация
Одним из основных подходов к обработке, анализу и визуализации геофизических данных является применение геоинформационных систем и технологий, что обусловлено их геопространственной привязкой. Вместе с тем, сложность представления геофизических данных связана с их комплексной структурой, предполагающей множество составляющих, которые имеют одну и ту же геопространственную привязку. Яркими примерами данных такой структуры и формата являются гравитационные и геомагнитные поля, которые в общем случае задаются трех и четырехкомпонентными векторами с разнонаправленными осями координат. При этом на сегодняшний день отсутствуют решения, позволяющие визуализировать указанные данные в комплексе, не декомпозируя их на отдельные скалярные значения, которые, в свою очередь, могут быть представлены в виде одного или многих пространственных слоев. В этой связи в работе предложена концепция, использующая элементы тензорного исчисления для обработки, хранения и визуализации информации такого формата. Формализован механизм тензорного представления компонент поля с возможностью его комбинирования с другими данными такого же формата, с одной стороны, и свертки при сочетании с данными более низкого ранга. На примере гибридной реляционно-иерархической модели данных предложен механизм хранения информации по тензорным полям, предусматривающий возможность описания и применения инструкций по трансформации при переходе между различными системами координат. В работе рассматривается применение подхода при переходе от декартовой к сферической системе координат при представлении параметров геомагнитного поля. Для комплексной визуализации параметров тензорного поля предложен подход, основанный на применении тензорных глифов. В качестве последних при этом используются суперэллипсы с осями, соответствующими рангу тензора. При этом атрибутивные значения предлагается визуализировать относительно осей графического примитива таким образом, что распределение данных может быть задано посредством варьирования градиента монохромного представления параметра вдоль оси. Работоспособность концепции была исследована в ходе сравнительного анализа тензорного подхода с решениями, основанными на скалярной декомпозиции соответствующих комплексных значений с последующим их представлением в виде одного или многих пространственных слоев. Проведенный анализ показал, что применение предложенного подхода позволит в значительной степени повысить наглядность формируемого геопространственного изображения без необходимости сложного перекрывания пространственных слоев.
Литература
2. Vorobev A.V., Pilipenko V.A., Enikeev T.A., Vorobeva G.R. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations // Computer Optics. 2020. vol. 44. no. 5. pp. 782–790.
3. Fleming J., Marvel S., Supak S., Motsinger-Reif A., Reif D. ToxPi*GIS Toolkit: creating, viewing, and sharing integrative visualizations for geospatial data using ArcGIS // Journal of Exposure Science & Environmental Epidemiology. 2022. vol. 32. no. 6. pp. 900–907. DOI: 10.1038/s41370-022-00433-w.
4. Simonyan A., Ohanyan M. Refined Spatio-Temporal Model of Accelerations of the Main Geomagnetic Field on the Earth’s Surface and Geomagnetic Jerks // Geomagnetism and Aeronomy. 2023. vol. 63. no. 3. pp. 325–348. DOI: 10.1134/S0016793223600078.
5. Boyarchuk M.A., Zhurkin I.G., Nepoklonov V.B. Concept of a visualization method for Earth’s gravity field on plain maps // Scientific Visualization. 2019. vol. 11. no. 1. pp. 70–79. DOI: 10.26583/sv.11.1.06.
6. Peng Z, Laramee S. Higher Dimensional Vector Field Visualization. A Survey // Theory and Practice of Computer Graphics (TPCG ‘09). 2009. pp. 149–163.
7. Meuschke M., Vob S., Gaidzik F., Preim B., Lawonn K. Skyscraper Visualization of Multiple Time-Dependent Scalar Fields on Surfaces // Computers & Graphics. 2021. vol. 99. pp. 22–42. DOI: 10.1016/j.cag.2021.05.005.
8. Lobo M.-J., Telea A., Hurter C. Feature Driven Combination of Animated Vector Field Visualizations // Computer Graphics Forum. 2020. vol. 39. no. 3. pp. 429–441. DOI: 10.1111/cgf.13992.
9. Hergl C., Blecha C., Kretzschmar V., Raith F., Gunther F., Stommel M., Jankowai J., Hotz I., Nagel T., Scheuermann G. Visualization of Tensor Fields in Mechanics // Computer Graphics Forum. 2021. vol. 40. no. 6. pp. 135–161. DOI: 10.1111/cgf.14209.
10. He Z., Hu X., Teng Yu., Zhang X., Shen X. Data agreement analysis and correction of comparative geomagnetic vector observations // Earth, Planets and Space. 2022. vol. 74. DOI: 10.1186/s40623-022-01583-9.
11. Huang Y., Wu L., Li D. Theoretical Research on Full Attitude Determination Using Geomagnetic Gradient Tensor // The Journal of Navigation. 2015. no. 68(5). pp. 951–961. DOI: 10.1017/S0373463315000259.
12. Vorobev A.V., Vorobeva G.R., Yusupova N.I. Conception of geomagnetic data integrated space // SPIIRAS Proceedings. 2019. vol. 18. no. 2. pp. 390–415. DOI: 10.15622/sp.18.2.390-415.
13. Reddy B., Bommala H., Bhyrapuneni S. Strategies and Approaches for Generating Identical Extensive XML Tree Instances // International Journal on Recent and Innovation Trends in Computing and Communication. 2023. vol. 11. pp. 559–564. DOI: 10.17762/ijritcc.v11i8s.7238.
14. Yu Q., Zhang X., Huang Zh.-H. Tensor Factorization-Based Method for Tensor Completion with Spatio-temporal Characterization // Journal of Optimization Theory and Applications. 2023. vol. 119. pp. 337–362. DOI: 10.1007/s10957-023-02287-0.
15. Xia S., Qiu D., Zhang X. Tensor factorization via transformed tensor-tensor product for image alignment // Numerical Algorithms. 2023. vol. 22. pp. 1251–1289. DOI: 10.1007/s11075-023-01607-9.
16. Tomasevic D., Peer P., Solina F., Jaklic A., Struc V. Reconstructing Superquadrics from Intensity and Color Images // Sensors. 2022. vol. 22(14). no. 5332. DOI: 10.3390/s22145332.
17. Mamieva I. Ruled algebraic surfaces with a main frame from three superellipses // Structural Mechanics of Engineering Constructions and Buildings. 2022. vol. 18. no. 4. pp. 387–395. DOI: 10.22363/1815-5235-2022-18-4-387-395.
18. Borisenko V., Ustenko S., Ustenko I. Constructing a method for the geometrical modeling of the lame superellipses in the oblique coordinate systems // Eastern-European Journal of Enterprise Technologies. 2020. vol. 2. no. 4. pp. 51–59. DOI: 10.15587/1729-4061.2020.201760.
19. Olayiwola T., Choi S.-J. Superellipse model: An accurate and easy-to-fit empirical model for photovoltaic panels // Solar Energy. 2023. vol. 262. DOI: 10.1016/j.solener.2023.05.026.
20. Vorobev A.V., Pilipenko V.A., Enikeev T.A., Vorobeva G.R. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations // Computer Optics. 2020. vol. 44. no. 5. pp. 782–790.
21. Vorobev A.V., Pilipenko V.A., Enikeev T.A., Vorobeva G.R., Khristodulo O.I. System for dynamic visualization of geomagnetic disturbances according to the data of ground magnetic stations // Scientific Visualization. 2021. vol. 13. no. 1. pp. 162–176. DOI: 10.26583/sv.13.1.11.
Опубликован
Как цитировать
Раздел
Copyright (c) Гульнара Равилевна Воробьева, Андрей Владимирович Воробьев, Глеб Олегович Орлов
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).