Прогнозирование на фондовых рынках с использованием формализма статистической механики
Ключевые слова:
динамика фондового рынка, функция распределения доходности, принцип максимальной энтропии, распределение Гиббса, распределение ЛапласаАннотация
Аналитически исследована возможность и целесообразность прогнозирования на фондовых рынках с помощью методов и подходов статистической механики. Аппарат статистической механики применен для анализа и прогноза одного из важнейших показателей рынка – распределения логарифмической доходности. В качестве исходной модели использована модель Лотки-Вольтерра, применяемая в экологии для описания систем типа «хищник-жертва». Она адекватно аппроксимирует динамику рынка. В статье использована ее гамильтоновость, позволяющая применить аппарат статистической механики. Аппарат статистической механики (с использованием принципа максимальной энтропии) позволяет реализовать вероятностный подход, который адаптирован к условиям неопределенности фондового рынка. Канонические переменные гамильтониана представлены в виде логарифмов цен акций и облигаций, совместная функция распределения вероятности цен акций и облигаций получена в виде распределения Гиббса. Больцмановский фактор, входящий в распределение Гиббса, позволяет оценить вероятность появления тех или иных цен на акции и облигации и получить аналитическое выражение для вычисления логарифмической доходности, дающее более точные результаты, чем широко используемое нормальное (Гауссово) распределение. По своим характеристикам полученное распределение напоминает распределение Лапласа. Вычислены основные характеристики полученного распределения – среднее значение, дисперсия, асимметрия, эксцесс. Математические результаты представлены графически. Дано объяснение причинно-следственного механизма, вызывающего изменение доходности рынка. Для этого развита идея Теодора Модиса о конкуренции между акциями и облигациями за внимание и деньги инвесторов (по аналогии с оборотом биомассы в моделях типа «хищник-жертва» в биологии). Результаты исследования представляют интерес для инвесторов, теоретиков и практиков фондового рынка. Они позволяют принимать продуманные и взвешенные решения по инвестированию за счет более реального представления об ожидаемой доходности и более адекватной оценки инвестиционного риска.
Литература
2. Shah D., Isah H., Zulkernine F. Stock market analysis: A review and taxonomy of prediction techniques // International Journal of Financial Studies. 2019. vol. 7(2). no. 26. DOI: 10.3390/ijfs7020026.
3. Mavruk T. Analysis of herding behavior in individual investor portfolios using machine learning algorithms // Research in International Business and Finance. 2022. vol. 62. no. 101740. DOI: 10.1016/j.ribaf.2022.101740.
4. Lee S.C., Eid Junio W. Portfolio construction and risk management: theory versus practice // RAUSP Management Journal. 2018. vol. 53. pp. 345–365. DOI: 10.1108/RAUSP-04-2018-009.
5. Ingber L. Hybrid classical-quantum computing: Applications to statistical mechanics of financial markets // E3S Web of Conferences. 2021. vol. 307. no. 04001. DOI: 10.1051/e3sconf/202130704001.
6. Anyiam K., Oluigbo I., Eze U., Ezeh G. An empirical investigation of the impact of information technology on global capital markets operation // International Journal of Research and Development Organisation. 2015. vol. 1. no. 1.
7. Song Y.-G., Zhou Y.-L., Han R.-J. Neural networks for stock price prediction // arXiv preprint arXiv:1805.11317v1. 2018. DOI: 10.48550/arXiv.1805.11317.
8. Lin Y., Liu S., Yang H., Wu H., Jiang B. Improving stock trading decisions based on pattern recognition using machine learning technology // PLOS ONE. 2021. vol. 16. no. 8. DOI: 10.1371/journal.pone.0255558.
9. Nou A., Lapitskaya D., Eratalay M.H., Sharma R. Predicting stock return and volatility with machine learning and econometric models: A comparative case study of the Baltic stock market // Tartu: The University of Tartu FEBA, 2021. 52 p. DOI: 10.2139/ssrn.3974770.
10. Maqsood A., Safdar S., Shafi R., Lelit N.J. Modeling stock market volatility using GARCH models: a case study of Nairobi securities exchange (NSE) // Open Journal of Statistics. 2017. vol. 7. no. 2. pp. 369–381. DOI: 10.4236/ojs.2017.72026.
11. Nazlioglu S., Kucukkaplan I., Kılıc E., Altuntas M. Financial market integration of emerging markets: Heavy tails, structural shifts, nonlinearity, and asymmetric persistence // Research in International Business and Finance. 2022. vol. 62. no. 101742. DOI: 10.1016/j.ribaf.2022.101742.
12. Camilleri S.J., Vassallo S., Bai Y. Predictability in securities price formation: differences between developed and emerging markets // Journal of Capital Markets Studies. 2020. vol. 4. no. 2. pp. 145–166. DOI: 10.1108/JCMS-07-2020-0025.
13. Mallikarjuna M., Rao R.P. Evaluation of forecasting methods from selected stock market returns // Financial Innovation. 2019. vol. 5(1). no. 40. DOI: 10.1186/s40854-019-0157-x.
14. Al-Thaqeb S.A. Do international markets overreact? Event study: international market reaction to US local news events // Research in International Business and Finance. 2018. vol. 44. pp. 369–385. DOI: 10.1016/j.ribaf.2017.07.106.
15. Shen X., Wang G., Wang Y. The influence of research reports on stock returns: The mediating effect of machine-learning-based investor sentiment // Discrete Dynamics in Nature and Society. 2021. vol. 2021. no. 5049179. DOI: 10.1155/2021/5049179.
16. Liu Z., Dashti Moghaddam M., Serota R.A. Distributions of historic market data – stock returns // The European Physical Journal B. 2019. vol. 92. no. 60. DOI: 10.1140/epjb/e2019-90218-8.
17. Ozdemir L. Volatility spillover stock prices and trading volume: Evidence from the pre-, in-, and post global financial crisis period // Frontiers in Applied Mathematics and Statistics. 2020. vol. 5. no. 65. DOI: 10.3389/fams.2019.00065.
18. Cheteni P. Stock market volatility using GARCH models: Evidence from South Africa and China stock markets // Journal of Economics and Behavioral Studies. 2016. vol. 8. no. 6. pp. 237–245. DOI: 10.22610/jebs.v8i6(J).1497.
19. Pham D. P. T., Huynh N. Q. A., Duong D. The impact of US presidents on market returns: Evidence from Trump's tweets // Research in International Business and Finance. 2022. vol. 62. no. 101681. DOI: 10.1016/j.ribaf.2022.101681.
20. Olbrys J., Majewska E. Asymmetry effects in volatility on major European stock markets: the EGARCH based approach // Quantitative Finance and Economics. 2017. vol. 1. no. 4. pp. 411–427. DOI: 10.3934/QFE.2017.4.411.
21. Kouser R., Saba I., Anjum F. Impact of asymmetric information on the investment sensitivity to stock price and the stock price sensitivity to investment // Journal of Accounting and Finance in Emerging Economies. 2016. vol. 2. no. 1. pp. 1–16. DOI: 10.26710/jafee.v2i1.101.
22. Dhesi G, Shakeel B., Ausloos M. Modeling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach // Annals of Operations Research. 2021. vol. 299. pp. 1397–1410. DOI: 10.1007/s10479-019-03305-z.
23. Chevapatrakul T., Xu Z., Yao K. The impact of tail risk on stock market returns: The role of market sentiment // International Review of Economics and Finance. 2019. vol. 59. pp. 289–301. DOI: 10.1016/j.iref.2018.09.005.
24. Pareto V. Manual of political economy. Translated by: Schwier A.S., Page A.N. New-York: A.M. Kelley, 1971. 504 p..
25. Levy M. Market efficiency, the Pareto wealth distribution, and the Levy distribution of stock returns // The economy as an evolving complex system, III: Current perspectives and future directions. 2005. pp. 101–132. DOI: 10.1093/acprof:oso/9780195162592.003.0006.
26. Kleinert H., Chen X.J. Boltzmann Distribution and Market Temperature. Physica A: Statistical Mechanics and its Applications. 2007. vol. 383. no. 2. pp. 513–518
27. Toth D., Jones B. Against the norm: modeling daily stock returns with the Laplace distribution. arXiv preprint arXiv:1906.10325. 2019. Available at: https://www.researchgate.net/publication/334027873_Against_the_Norm_Modeling_Daily_Stock_Returns_with_the_Laplace_Distribution.
28. Volterra V. Fluctuations in the abundance of a species considered mathematically // Nature. 1926. vol. 118. pp. 558–560. DOI: 10.1038/118558a0.
29. Volterra V. Variazioni e fluttuazioni dei numero d’individui in specie animali conviventi // Societá anonima tipografica "Leonardo da Vinci", 1927. 142 p.
30. Volterra V. Lessons on the mathematical theory of struggle for life. Paris, Gauthier-Villars, 1931. 214 p.
31. Lotka A.J. Elements of physical biology // Baltimore: Williams and Wilkins, 1925. 495 p.
32. Modis T. Technological forecasting at the Stock Market // Technological Forecasting and Social Change. 1999. vol. 62. no. 3. pp. 173–202. DOI: 10.1016/S0040-1625(99)00046-3.
33. Modis T. An S-shaped trail to Wall Street: survival of the fittest reigns at the Stock Market // Geneva, Growth Dynamics. 1999. 201 p.
34. Clement E.P., Jim U.S. Statistical mechanics in economics: An application of Brownian motion in modeling prices of assets // International Journal of Statistics and Applied Mathematics. 2021. vol. 6. no. 1. pp. 29–34.
35. Yakovenko Victor M. and Rosser J. Barkley Jr. Colloquium: Statistical mechanics of money, wealth, and income // Reviews of Modern Physics. 2009. vol. 81. no. 1703. DOI: 10.1103/RevModPhys.81.1703.
36. Chakraborti A., Chakrabarti B.K. Statistical mechanics of money: How saving propensity affects its distribution // The European Physical Journal B-Condensed Matter and Complex Systems. 2000. vol. 17. pp. 167–170. DOI: 10.1007/s100510070173.
37. Gatabazi P., Mba J.C., Pindza E. Fractional Gray Lotka-Volterra models with application to cryptocurrencies adoption // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2019. vol. 29(7). no. 073116. DOI: 10.1063/1.5096836.
38. Zhang G., McAdams D.A., Shankar V., Mohammadi Darani M. Technology evolution prediction using Lotka-Volterra equations // Journal of Mechanical Design. 2018. vol. 140(6). no. 061101. DOI: 10.1115/1.4039448.
39. Титов В.А., Вейнберг Р.Р. Анализ существующих динамических моделей на базе системы уравнений Лотки-Вольтерры «хищник-жертва» // Фундаментальные исследования. 2016. № 8–2. С. 409–413.
40. Романов В.П., Ахмадеев Б.А. Моделирование инновационной экосистемы на основе модели «хищник-жертва» // Бизнес-информатика. 2015. № 1(31). С. 7–17.
41. Hung H.C., Tsai Y.S., Wu M.C. A modified Lotka-Volterra model for competition forecasting in Taiwan’s retail industry // Computers and Industrial Engineering. 2014. vol. 77. pp. 70–79. DOI: 10.1016/j.cie.2014.09.010.
42. Sterpu M., Rocsoreanu C., Soava G., and Mehedintu A. A generalization of the Grey Lotka–Volterra model and application to GDP, export, import and investment for the European Union // Mathematics. 2023. vol. 11(15). no. 3351. DOI: 10.3390/math11153351.
43. Pan M.X., Wang S.Y., Wu X.L., Zhang M.W. Study on the growth driving model of the enterprise innovation community based on the Lotka–Volterra model: a case study of the Chinese Automobile Manufacturing Enterprise Community // Mathematical Problems in Engineering. 2023. vol. 2023. no. 8743167. DOI: 10.1155/2023/8743167.
44. Bauer R., Schwarzmayr F., Brunner N., Kühleitner M. Dynamics of the Austrian food market: application of Lotka-Volterra differential equations // Open Journal of Modelling and Simulation. 2022. vol. 10. no. 2. pp. 152–164. DOI: 10.4236/ojmsi.2022.102009.
Опубликован
Как цитировать
Раздел
Copyright (c) Юрий Викторович Бибик
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).