Обзор графических вероятностных моделей гармонии для анализа музыкальных произведений
Ключевые слова:
информационный поиск музыки, рекомендательные системы, гармония, оценка схожести, графические модели, вероятностные модели, байесовский вывод, марковские цепи, скрытые марковские моделиАннотация
Цель статьи — познакомить читателя с современным состоянием дел в области автоматического анализа музыкальной гармонии. Мотивацией для исследований в этой области может являться создание автоматических систем рекомендации музыки, ориентированных на содержание (наподобие Pandora, но без ручного труда экспертов-музыковедов). Основное внимание уделено графическим вероятностным моделям как одному из наиболее перспективных подходов, но описываются и альтернативные методы. Рассмотрены работы, использующие марковские цепи, скрытые марковские модели, многоуровневые графические модели. Приведены как работы, моделирующие только гармонию — последовательности аккордов, в некоторых случаях и тональность, — так и работы, включающие в себя информацию о структуре анализируемого произведения (ритмической, голосовой).Литература
Allan H., Mullensiefen D., Wiggins G Methodological Considerations In Studies Of Musical Similarity // Proceedings of the International Conference on Music Information Retriev-al (ISMIR 2007) (Vienna, Austria, September 23–27, 2007) URL: http://ismir2007.ismir.net/proceedings/ISMIR2007_p473_allan.pdf
Anderson C The Long Tail // Журнал Wired: [сайт]. URL: http://www.wired.com/wired/archive/12.10/tail.html
Anderson C The Long Tail: Why the Future of Business Is Selling Less of More. New York: Hyperion, 2006. 256 pp
Anglade A., Dixon S Characterisation of Harmony With Inductive Logic Programming // Proceedings of the Ninth International Conference on Music Information Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 63–68
Aucouturier J.-J., Pachet F Improving timbre similarity: How high’s the sky? // Journal of Negative Results in Speech and Audio Sciences. 2004. № 1(1). URL: http://ayesha.lti.cs.cmu.edu/ojs/index.php/jnrsas/article/view/2/2
Bas de Haas W., Rohrmeier M., Veltkamp R., Wiering F Modeling Harmonic Similarity Using a Generative Grammar of Tonal Harmony // Proceedings of the 10th International Socie-ty for Music Information Retrieval Conference (ISMIR 2009) (Kobe, Japan, October 26–30, 2009) URL: http://ismir2009.ismir.net/proceedings/OS7-2.pdf
Bas de Haas W., Veltkamp R., Wiering F Tonal Pitch Step Distance: a Similarity Measure for Chord Progressions // Proceedings of the Ninth International Conference on Music Infor-mation Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 51–56
Bergeron M., Conklin D Structured Polyphonic Patterns // Proceedings of the Ninth Interna-tional Conference on Music Information Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 69–74
Bishop C Pattern Recognition and Machine Learning. Springer, 2006. 738 pp
Blei D., Jordan M Variational Inference for Dirichlet Process Mixtures // Journal of Bayes-ian Analysis. 2006. № 1(1). Pp. 121–144
Cambouropoulos E Voice and stream: Perceptual and computational modeling of voice separation // Music Perception. 2006. № 26. Pp. 75–94
Castelluccio M The Music Genome Project // Strategic Finance. 2006. № 88 (6). Pp. 57–58
Cemgil A.T Bayesian Music Transcription. Ph.D. Thesis, Radboud University of Nijme-gen, Netherlands, 2004. 119 pp
Cemgil A.T., Kappen B Monte Carlo methods for tempo tracking and rhythm quantiza-tion. // Journal of Artificial Intelligence Research. 2003. 18. Pp. 45–81
Cemgil A.T., Kappen B., Barber D A generative model for music transcription // IEEE Transactions on Speech and Audio Processing. 2005. 14 (2). Pp. 679–694
Cemgil A.T., Kappen B., Desain P., Honing H On tempo tracking: Tempogram representa-tion and Kalman filtering // Journal of New Music Research. 2000. 29. Pp. 259–273
Chai W., Vercoe B Folk music classification using hidden Markov models // In Proceed-ings of the International Conference on Artificial Intelligence (Las Vegas, USA, 2001). Las Vegas: CSREA Press, 2001. URL: http://pubs.media.mit.edu/?section=docdetail&id=210134&collection=Media+Lab&filtercollection=Media+Lab
Davy M Multiple fundamental frequency estimation based on generative models // In A.P. Klapuri & M. Davy (Eds.), Signal Processing Methods for Music Transcription (pp. 203–227). New York: Springer, 2006. 452 pp
de la Cuadra P., Master A., Sapp C Efficient pitch detection techniques for interactive music // In Proceedings of the 2001 International Computer Music Conference (La Habana, Cuba, 2001) URL: http://quod.lib.umich.edu/cgi/p/pod/dod-idx?c=icmc;idno=bbp2372.2001.061
Dempster A.P., Laird N.M., Rubin D.B Maximum Likelihood from Incomplete Data via the EM Algorithm // Journal of the Royal Statistical Society. Series B (Methodological). 1977. № 39 (1). Pp. 1–38
Dixon S., Cambouropoulos E Beat tracking with musical knowledge // In Horn, W. (Ed.), Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000) (Berlin, Germany, August 20-25, 2000). Berlin, IOS Press, 2000. Pp. 626–630
Doornbusch P Computer Sound Synthesis in 1951 — The Music of CSIRAC // Computer Music Journal. 2004. Volume 28 Issue 1. URL: http://www.mitpressjournals.org/doi/pdf/10.1162/014892604322970616
Gelfand A.E., Smith A.F.M Sampling-Based Approaches to Calculating Marginal Densities // Journal of the American Statistical Association. 1990. № 85 (410). Pp. 398–409
Godsill S.J., Rayner P.J.W Digital Audio Restoration — A Statistical Model-Based Ap-proach. Springer-Verlag, 1998. 328 pp
Grubb L A Probabilistic Method for Tracking a Vocalist. Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1998. 258 pp
Amazon.com: Online Shopping for Electronics, Apparel, Computers, Books, DVDs & more. URL: http://amazon.com
Last.fm - Listen to internet radio and the largest music catalogue online. URL: http://last.fm
Pandora Radio — Listen to Free Internet Audio, Find New Music. URL: http://pandora.com
Apple - iTunes - Everything you need to be entertained. URL: http://www.apple.com/itunes/
Netflix - Watch TV Shows Online, Watch Movies Online. URL: https://www.netflix.com/
Hunter D.R, Lange K A Tutorial on MM Algorithms // The American Statistician. 2004. № 58. Pp. 30–37
Hunter D.R MM algorithms for generalized Bradley-Terry models // The Annals of Statis-tics. 2004. № 32 (1). Pp. 384–406
Jaakkola T.S Tutorial on variational approximation methods / In Opper, M. and Saad, D. (eds.), Advanced mean field methods: theory and practice. MIT Press, 2000. Pp. 129–159
Jackman S Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo / American Journal of Political Science. 2000. № 44(2). Pp. 375–404
Jasra A., Holmes C.C., Stephens D.A Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Models / Statistical Science. 2005. № 20(1). P. 50
Jordan M.I., Ghahramani Z., Jaakkola T.S., Saul L.K An Introduction to Variational Methods for Graphical Models / Machine Learning. 1998. № 37. Pp. 183–233
Joyce J Pandora and the Music Genome Project / Scientific Computing. 2006. № 23 (10). Pp. 14, 40–41
Kashino K., Nakadai K., Kinoshita T., Tanaka H Application of Bayesian probability networks to musical scene analysis / In D.F. Rosenthal & H.G. Okuno (Eds.), Computational Auditory Scene Analysis (pp. 115–137). Mahwah, NJ: Lawrence Erlbaum, 1998. 416 pp
Kirlin P., Utgoff P VOISE: Learning to segregate voices in explicit and implicit polyphony // In J. Reiss & G. Wiggins (Eds.), Proceedings of the Sixth International Conference on Music Information Retrieval (ISMIR 2005) (London, UK, September 11–15, 2005). London, UK: University of London, 2005. Pp. 552–557
Klapuri A.P Automatic music transcription as we know it today / Journal of New Music Research. 2004. № 33. Pp. 269–282
Klapuri A.P., Davy M Processing Methods for Music Transcription. New York: Springer, 2006. 452 pp
Kostka S., Payne D Workbook for Tonal Harmony. New York: McGraw Hill, 1995.
Kröger P., Passos A., Sampaio Marcos, de Cidra Givaldo Rameau: A System For Auto-matic Harmonic Analysis // In Proceedings of ICMC 2008 (Belfast, UK). URL: http://quod.lib.umich.edu/i/icmc/bbp2372.2008.077?view=toc
Lee K., Slaney M A Unified System for Chord Transcription and Key Extraction Using Hidden Markov Models // Proceedings of the Fourth International Conference on Music Infor-mation Retrieval (ISMIR 2003) (Baltimore, Maryland (USA), 26-30 October 2003). Pp. 245–250
Lerdahl F., Jackendoff R A Generative Theory of Tonal Music. Cambridge: MIT Press, 1983. 368 pp
Longuet-Higgins H.C Mental Processes: Studies in Cognitive Science. MIT Press, Cam-bridge, 1987. 424 pp
Longuet-Higgins H.C The perception of melodies // Nature. 1976. № 263. Pp. 646–653
Longuet-Higgins H.C., Lee C Perception of musical rhythms // Perception. 1982. № 11(2). Pp. 115–128
Mackay D.J Information Theory, Inference, and Learning Algorithms. Cambridge Univer-sity Press, 2003. 640 pp
Marques G., Lopes M., Sordo M., Langlois T., Gouyon F Additional Evidence That Com-mon Low-Level Features of Individual Audio Frames Are Not Representative of Music Genre // Proceedings of the Eleventh International Society for Music Information Retrieval Confer-ence (ISMIR 2010) (Utrecht, Netherlands, August 9–13, 2010). URL: http://www.mtg.upf.edu/system/files/publications/20.pdf
Mauch M., Dixon D., Harte Ch., Casey M., Fields B Discovering Chord Idioms Through Beatles and Real Book Songs // Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007) (Vienna, Austria, September 23-27) Pp. 255–258
Minka T A family of algorithms for approximate Bayesian inference. PhD thesis, Massa-chusetts Institute of Technology, 2001. 75 pp
Minka T Expectation propagation for approximate Bayesian inference // In Breese, Jack S. and Koller, Daphne (eds.), Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (Seattle, WA, August 2–5, 2001). Massachusetts: Morgan Kaufmann, 2001. Pp. 362–369
Mont-Reynaud B Problem-Solving Strategies in a Music Transcription System // In Pro-ceedings of the 1985 International Joint Conference on Artificial Intelligence (Los Angeles, California, August 18–23, 1985). Pp. 916–918
Moorer J On the transcription of musical sound by computer // Computer Music Jour-nal. 1977. № 1(4). Pp. 32–38
Mouton R., Pachet F The Symbolic vs. Numeric Controversy in Automatic Analysis of Music // In: Widmer G. (ed.); Artificial Intelligence and Music (IJCAI—95 Workshop Program Working Notes). 1995. Pp. 32–40
Neal R., Hinton G. Michael I. Jordan. Ed A view of the EM algorithm that justifies incre-mental, sparse, and other variants // Learning in Graphical Models. Cambridge, MA: MIT-Press, 1999. Pp. 355–368
Paiement J-F., Eck D., Bengio S A Probabilistic Model for Chord Progressions // In J. Reiss & G. Wiggins (Eds.), Proceedings of the Sixth International Conference on Music Information Retrieval (ISMIR 2005) (London, UK, September 11–15, 2005). London, UK: University of London, 2005. Pp. 312–319
Pearl J Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (2nd ed.) San Francisco, CA: Morgan Kaufmann, 1988. 552 pp
Pickens J., Crawford T Harmonic Models for Polyphonic Music Retrieval // Proceedings of International Conference on Information and Knowledge Management (CIKM 2002) (McLean, VA, November 4–9, 2002). Pp. 430–437
Pressing J., Lawrence P Transcribe: A comprehensive autotranscription program // In Proceedings of the International Computer Music Conference (Tokyo, Japan, 1993). Pp. 343–345
Rabiner L.R., Chen M.J., Rosenberg A.E., McGonega A A comparative study of several pitch detection algorithms // IEEE Transactions on Acoustics, Speech and Signal Processing. 1976. № 23. Pp. 552–557
Raphael C A mixed graphical model for rhythmic parsing // In Breese, Jack S. and Koller, Daphne (eds.), Proceedings of the 17th Conference on Uncer-tainty in Artificial Intelligence (Seattle, WA, August 2–5, 2001). Massachusetts: Morgan Kaufmann, 2001. Pp. 462–471
Raphael C Automatic transcription of piano music // In 3rd International Conference on Music Information Retrieval (Paris, France, October 13–17, 2002). Pp. 15–19
Raphael C., Stoddard J Harmonic Analysis With Probabilistic Graphical Models // In Proceedings of the Fourth International Conference on Music Information Retrieval (ISMIR 2003) (Baltimore, Maryland (USA), 26-30 October 2003). URL: http://ismir2003.ismir.net/papers/Raphael.PDF
Roads C Research in Music and Artificial Intelligence // ACM Computing Surveys. 1985. № 17(2). Pp. 163–190
Robert C.P., Casella G Monte Carlo Statistical Methods (second edition). New York: Springer-Verlag, 2004. 645 pp
Rosenthal D Emulation of human rhythm perception // Computer Music Journal. 1992. № 16(1). Pp. 64–76
Rosenthal D Machine Rhythm: Computer Emulation of Human Rhythm Perception. PhD. Thesis, Department of Computer Science, Massachussetts Institute of Technology, 1992. 139 pp
Scaringella N., Zoia G., Mlynek D Automatic genre classification of music content: a survey // IEEE Signal Processing Magazine. 2006. vol. 23, no. 2. Pp. 133–141
Scheirer E.D Music-Listening Systems. Ph.D. thesis, Massachusetts Institute of Technolo-gy, 2000. 248 pp
Scheirer E.D Tempo and beat analysis of acoustic musical signals // Journal of Acoustical Society of America. 1998. № 103:1. Pp. 588–601
Sterian A Model-Based Segmentation of Time-Frequency Images for Musical Transcrip-tion. Ph.D. thesis, University of Michigan, Ann Arbor, 1999. 149 pp
Sumi K., Itoyama K., Yoshii K., Komatani K., Ogata T., Okuno H Automatic Chord Recognition Based on Probabilistic Integration of Chord Transition and Bass Pitch Estimation // Proceedings of the Ninth International Conference on Music Information Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 39–44
Temperley D A Unified Probabilistic Model of Polyphonic Music Analysis // Journal of New Music Research. 2009. № 38. Pp. 3–18
Temperley D Bayesian Models of Musical Structure and Cognition // Musicae Scientiae. 2004. № 8 (2). Pp. 175–205
Temperley D Music and Probability. MIT Press, 2007. 256 pp
Temperley D The Cognition of Basic Musical Structures. Cambridge, MA: MIT Press, 2001. 422 pp
Temperley D., Sleator D Modeling meter and harmony: a preference-rule approach // Computer Music Journal. 1999. № 23(1). Pp. 10–27
Temperley, D An algorithm for harmonic analysis / Music Perception. 1997. № 15. Pp. 31–68
Terhardt E Pitch, consonance and harmony // Journal of the Acoustical Society of Ameri-ca. 1974. № 55(5). Pp. 1061–1069
Todd N.P.M The auditory ―primal sketch‖: A multiscale model of rhythmic grouping // Journal of new music Research. 1994. vol.23, № 1. Pp. 25–70
Tsui, V.W.S Harmonic analysis using neural networks. Master’s thesis, University of Toronto, 2002. 96 pp
Walmsley P.J Signal Separation of Musical Instruments. Ph.D. thesis, University of Cam-bridge, 2000. 237 pp
Weiss Y., Freeman W.T Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology // Neural Computation. 2001. № 13 (10). Pp. 2173–2200
Yedidia J.S., Freeman W.T Understanding Belief Propagation and Its Generalizations / In Lakemeyer, Gerhard; Nebel, Bernhard. Exploring Artificial Intelligence in the New Millennium. Massachusetts: Morgan Kaufmann, 2003. Pp. 239–236
Zhang X., Gerhard D Chord Recognition using Instrument Voicing Constraints // Proceed-ings of the Ninth International Conference on Music Information Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 33–38
Балтийский И.А., Николенко С.И Графическая вероятностная модель для оценки схожести гармонии музыкальных произведений // Труды СПИИРАН. СПб.: Наука, 2011
Тулупьев А.Л, Николенко С.И., Сироткин А.В Байесовские сети доверия: логико-вероятностный вывод в ациклических направленных графах. СПб.: Изд-во С.-Петерб. ун-та, 2009, 400 с
Тулупьев А.Л Алгебраические байесовские сети: реализация логико-вероятностного вывода в комплексе java-программ // Труды СПИИРАН. СПб.: Наука, 2009. Вып. 8. С. 191–232
Тулупьев А.Л Задача локального автоматического обучения в алгебраических байе-совских сетях: логико-вероятностный подход // Труды СПИИРАН. 2008. Вып. 7. СПб.: Наука, 2008. С. 11–25
Тулупьев А.Л., Николенко С.И., Сироткин А.В Байесовские сети: логико-вероятностный подход. СПб.: Наука, 2006. 608 с
Фильченков А.А., Тулупьев А.Л Структурный анализ систем минимальных графов смежности // Труды СПИИРАН. 2009. Вып. 11. С. 104–127
Anderson C The Long Tail // Журнал Wired: [сайт]. URL: http://www.wired.com/wired/archive/12.10/tail.html
Anderson C The Long Tail: Why the Future of Business Is Selling Less of More. New York: Hyperion, 2006. 256 pp
Anglade A., Dixon S Characterisation of Harmony With Inductive Logic Programming // Proceedings of the Ninth International Conference on Music Information Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 63–68
Aucouturier J.-J., Pachet F Improving timbre similarity: How high’s the sky? // Journal of Negative Results in Speech and Audio Sciences. 2004. № 1(1). URL: http://ayesha.lti.cs.cmu.edu/ojs/index.php/jnrsas/article/view/2/2
Bas de Haas W., Rohrmeier M., Veltkamp R., Wiering F Modeling Harmonic Similarity Using a Generative Grammar of Tonal Harmony // Proceedings of the 10th International Socie-ty for Music Information Retrieval Conference (ISMIR 2009) (Kobe, Japan, October 26–30, 2009) URL: http://ismir2009.ismir.net/proceedings/OS7-2.pdf
Bas de Haas W., Veltkamp R., Wiering F Tonal Pitch Step Distance: a Similarity Measure for Chord Progressions // Proceedings of the Ninth International Conference on Music Infor-mation Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 51–56
Bergeron M., Conklin D Structured Polyphonic Patterns // Proceedings of the Ninth Interna-tional Conference on Music Information Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 69–74
Bishop C Pattern Recognition and Machine Learning. Springer, 2006. 738 pp
Blei D., Jordan M Variational Inference for Dirichlet Process Mixtures // Journal of Bayes-ian Analysis. 2006. № 1(1). Pp. 121–144
Cambouropoulos E Voice and stream: Perceptual and computational modeling of voice separation // Music Perception. 2006. № 26. Pp. 75–94
Castelluccio M The Music Genome Project // Strategic Finance. 2006. № 88 (6). Pp. 57–58
Cemgil A.T Bayesian Music Transcription. Ph.D. Thesis, Radboud University of Nijme-gen, Netherlands, 2004. 119 pp
Cemgil A.T., Kappen B Monte Carlo methods for tempo tracking and rhythm quantiza-tion. // Journal of Artificial Intelligence Research. 2003. 18. Pp. 45–81
Cemgil A.T., Kappen B., Barber D A generative model for music transcription // IEEE Transactions on Speech and Audio Processing. 2005. 14 (2). Pp. 679–694
Cemgil A.T., Kappen B., Desain P., Honing H On tempo tracking: Tempogram representa-tion and Kalman filtering // Journal of New Music Research. 2000. 29. Pp. 259–273
Chai W., Vercoe B Folk music classification using hidden Markov models // In Proceed-ings of the International Conference on Artificial Intelligence (Las Vegas, USA, 2001). Las Vegas: CSREA Press, 2001. URL: http://pubs.media.mit.edu/?section=docdetail&id=210134&collection=Media+Lab&filtercollection=Media+Lab
Davy M Multiple fundamental frequency estimation based on generative models // In A.P. Klapuri & M. Davy (Eds.), Signal Processing Methods for Music Transcription (pp. 203–227). New York: Springer, 2006. 452 pp
de la Cuadra P., Master A., Sapp C Efficient pitch detection techniques for interactive music // In Proceedings of the 2001 International Computer Music Conference (La Habana, Cuba, 2001) URL: http://quod.lib.umich.edu/cgi/p/pod/dod-idx?c=icmc;idno=bbp2372.2001.061
Dempster A.P., Laird N.M., Rubin D.B Maximum Likelihood from Incomplete Data via the EM Algorithm // Journal of the Royal Statistical Society. Series B (Methodological). 1977. № 39 (1). Pp. 1–38
Dixon S., Cambouropoulos E Beat tracking with musical knowledge // In Horn, W. (Ed.), Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000) (Berlin, Germany, August 20-25, 2000). Berlin, IOS Press, 2000. Pp. 626–630
Doornbusch P Computer Sound Synthesis in 1951 — The Music of CSIRAC // Computer Music Journal. 2004. Volume 28 Issue 1. URL: http://www.mitpressjournals.org/doi/pdf/10.1162/014892604322970616
Gelfand A.E., Smith A.F.M Sampling-Based Approaches to Calculating Marginal Densities // Journal of the American Statistical Association. 1990. № 85 (410). Pp. 398–409
Godsill S.J., Rayner P.J.W Digital Audio Restoration — A Statistical Model-Based Ap-proach. Springer-Verlag, 1998. 328 pp
Grubb L A Probabilistic Method for Tracking a Vocalist. Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1998. 258 pp
Amazon.com: Online Shopping for Electronics, Apparel, Computers, Books, DVDs & more. URL: http://amazon.com
Last.fm - Listen to internet radio and the largest music catalogue online. URL: http://last.fm
Pandora Radio — Listen to Free Internet Audio, Find New Music. URL: http://pandora.com
Apple - iTunes - Everything you need to be entertained. URL: http://www.apple.com/itunes/
Netflix - Watch TV Shows Online, Watch Movies Online. URL: https://www.netflix.com/
Hunter D.R, Lange K A Tutorial on MM Algorithms // The American Statistician. 2004. № 58. Pp. 30–37
Hunter D.R MM algorithms for generalized Bradley-Terry models // The Annals of Statis-tics. 2004. № 32 (1). Pp. 384–406
Jaakkola T.S Tutorial on variational approximation methods / In Opper, M. and Saad, D. (eds.), Advanced mean field methods: theory and practice. MIT Press, 2000. Pp. 129–159
Jackman S Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo / American Journal of Political Science. 2000. № 44(2). Pp. 375–404
Jasra A., Holmes C.C., Stephens D.A Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Models / Statistical Science. 2005. № 20(1). P. 50
Jordan M.I., Ghahramani Z., Jaakkola T.S., Saul L.K An Introduction to Variational Methods for Graphical Models / Machine Learning. 1998. № 37. Pp. 183–233
Joyce J Pandora and the Music Genome Project / Scientific Computing. 2006. № 23 (10). Pp. 14, 40–41
Kashino K., Nakadai K., Kinoshita T., Tanaka H Application of Bayesian probability networks to musical scene analysis / In D.F. Rosenthal & H.G. Okuno (Eds.), Computational Auditory Scene Analysis (pp. 115–137). Mahwah, NJ: Lawrence Erlbaum, 1998. 416 pp
Kirlin P., Utgoff P VOISE: Learning to segregate voices in explicit and implicit polyphony // In J. Reiss & G. Wiggins (Eds.), Proceedings of the Sixth International Conference on Music Information Retrieval (ISMIR 2005) (London, UK, September 11–15, 2005). London, UK: University of London, 2005. Pp. 552–557
Klapuri A.P Automatic music transcription as we know it today / Journal of New Music Research. 2004. № 33. Pp. 269–282
Klapuri A.P., Davy M Processing Methods for Music Transcription. New York: Springer, 2006. 452 pp
Kostka S., Payne D Workbook for Tonal Harmony. New York: McGraw Hill, 1995.
Kröger P., Passos A., Sampaio Marcos, de Cidra Givaldo Rameau: A System For Auto-matic Harmonic Analysis // In Proceedings of ICMC 2008 (Belfast, UK). URL: http://quod.lib.umich.edu/i/icmc/bbp2372.2008.077?view=toc
Lee K., Slaney M A Unified System for Chord Transcription and Key Extraction Using Hidden Markov Models // Proceedings of the Fourth International Conference on Music Infor-mation Retrieval (ISMIR 2003) (Baltimore, Maryland (USA), 26-30 October 2003). Pp. 245–250
Lerdahl F., Jackendoff R A Generative Theory of Tonal Music. Cambridge: MIT Press, 1983. 368 pp
Longuet-Higgins H.C Mental Processes: Studies in Cognitive Science. MIT Press, Cam-bridge, 1987. 424 pp
Longuet-Higgins H.C The perception of melodies // Nature. 1976. № 263. Pp. 646–653
Longuet-Higgins H.C., Lee C Perception of musical rhythms // Perception. 1982. № 11(2). Pp. 115–128
Mackay D.J Information Theory, Inference, and Learning Algorithms. Cambridge Univer-sity Press, 2003. 640 pp
Marques G., Lopes M., Sordo M., Langlois T., Gouyon F Additional Evidence That Com-mon Low-Level Features of Individual Audio Frames Are Not Representative of Music Genre // Proceedings of the Eleventh International Society for Music Information Retrieval Confer-ence (ISMIR 2010) (Utrecht, Netherlands, August 9–13, 2010). URL: http://www.mtg.upf.edu/system/files/publications/20.pdf
Mauch M., Dixon D., Harte Ch., Casey M., Fields B Discovering Chord Idioms Through Beatles and Real Book Songs // Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007) (Vienna, Austria, September 23-27) Pp. 255–258
Minka T A family of algorithms for approximate Bayesian inference. PhD thesis, Massa-chusetts Institute of Technology, 2001. 75 pp
Minka T Expectation propagation for approximate Bayesian inference // In Breese, Jack S. and Koller, Daphne (eds.), Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (Seattle, WA, August 2–5, 2001). Massachusetts: Morgan Kaufmann, 2001. Pp. 362–369
Mont-Reynaud B Problem-Solving Strategies in a Music Transcription System // In Pro-ceedings of the 1985 International Joint Conference on Artificial Intelligence (Los Angeles, California, August 18–23, 1985). Pp. 916–918
Moorer J On the transcription of musical sound by computer // Computer Music Jour-nal. 1977. № 1(4). Pp. 32–38
Mouton R., Pachet F The Symbolic vs. Numeric Controversy in Automatic Analysis of Music // In: Widmer G. (ed.); Artificial Intelligence and Music (IJCAI—95 Workshop Program Working Notes). 1995. Pp. 32–40
Neal R., Hinton G. Michael I. Jordan. Ed A view of the EM algorithm that justifies incre-mental, sparse, and other variants // Learning in Graphical Models. Cambridge, MA: MIT-Press, 1999. Pp. 355–368
Paiement J-F., Eck D., Bengio S A Probabilistic Model for Chord Progressions // In J. Reiss & G. Wiggins (Eds.), Proceedings of the Sixth International Conference on Music Information Retrieval (ISMIR 2005) (London, UK, September 11–15, 2005). London, UK: University of London, 2005. Pp. 312–319
Pearl J Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (2nd ed.) San Francisco, CA: Morgan Kaufmann, 1988. 552 pp
Pickens J., Crawford T Harmonic Models for Polyphonic Music Retrieval // Proceedings of International Conference on Information and Knowledge Management (CIKM 2002) (McLean, VA, November 4–9, 2002). Pp. 430–437
Pressing J., Lawrence P Transcribe: A comprehensive autotranscription program // In Proceedings of the International Computer Music Conference (Tokyo, Japan, 1993). Pp. 343–345
Rabiner L.R., Chen M.J., Rosenberg A.E., McGonega A A comparative study of several pitch detection algorithms // IEEE Transactions on Acoustics, Speech and Signal Processing. 1976. № 23. Pp. 552–557
Raphael C A mixed graphical model for rhythmic parsing // In Breese, Jack S. and Koller, Daphne (eds.), Proceedings of the 17th Conference on Uncer-tainty in Artificial Intelligence (Seattle, WA, August 2–5, 2001). Massachusetts: Morgan Kaufmann, 2001. Pp. 462–471
Raphael C Automatic transcription of piano music // In 3rd International Conference on Music Information Retrieval (Paris, France, October 13–17, 2002). Pp. 15–19
Raphael C., Stoddard J Harmonic Analysis With Probabilistic Graphical Models // In Proceedings of the Fourth International Conference on Music Information Retrieval (ISMIR 2003) (Baltimore, Maryland (USA), 26-30 October 2003). URL: http://ismir2003.ismir.net/papers/Raphael.PDF
Roads C Research in Music and Artificial Intelligence // ACM Computing Surveys. 1985. № 17(2). Pp. 163–190
Robert C.P., Casella G Monte Carlo Statistical Methods (second edition). New York: Springer-Verlag, 2004. 645 pp
Rosenthal D Emulation of human rhythm perception // Computer Music Journal. 1992. № 16(1). Pp. 64–76
Rosenthal D Machine Rhythm: Computer Emulation of Human Rhythm Perception. PhD. Thesis, Department of Computer Science, Massachussetts Institute of Technology, 1992. 139 pp
Scaringella N., Zoia G., Mlynek D Automatic genre classification of music content: a survey // IEEE Signal Processing Magazine. 2006. vol. 23, no. 2. Pp. 133–141
Scheirer E.D Music-Listening Systems. Ph.D. thesis, Massachusetts Institute of Technolo-gy, 2000. 248 pp
Scheirer E.D Tempo and beat analysis of acoustic musical signals // Journal of Acoustical Society of America. 1998. № 103:1. Pp. 588–601
Sterian A Model-Based Segmentation of Time-Frequency Images for Musical Transcrip-tion. Ph.D. thesis, University of Michigan, Ann Arbor, 1999. 149 pp
Sumi K., Itoyama K., Yoshii K., Komatani K., Ogata T., Okuno H Automatic Chord Recognition Based on Probabilistic Integration of Chord Transition and Bass Pitch Estimation // Proceedings of the Ninth International Conference on Music Information Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 39–44
Temperley D A Unified Probabilistic Model of Polyphonic Music Analysis // Journal of New Music Research. 2009. № 38. Pp. 3–18
Temperley D Bayesian Models of Musical Structure and Cognition // Musicae Scientiae. 2004. № 8 (2). Pp. 175–205
Temperley D Music and Probability. MIT Press, 2007. 256 pp
Temperley D The Cognition of Basic Musical Structures. Cambridge, MA: MIT Press, 2001. 422 pp
Temperley D., Sleator D Modeling meter and harmony: a preference-rule approach // Computer Music Journal. 1999. № 23(1). Pp. 10–27
Temperley, D An algorithm for harmonic analysis / Music Perception. 1997. № 15. Pp. 31–68
Terhardt E Pitch, consonance and harmony // Journal of the Acoustical Society of Ameri-ca. 1974. № 55(5). Pp. 1061–1069
Todd N.P.M The auditory ―primal sketch‖: A multiscale model of rhythmic grouping // Journal of new music Research. 1994. vol.23, № 1. Pp. 25–70
Tsui, V.W.S Harmonic analysis using neural networks. Master’s thesis, University of Toronto, 2002. 96 pp
Walmsley P.J Signal Separation of Musical Instruments. Ph.D. thesis, University of Cam-bridge, 2000. 237 pp
Weiss Y., Freeman W.T Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology // Neural Computation. 2001. № 13 (10). Pp. 2173–2200
Yedidia J.S., Freeman W.T Understanding Belief Propagation and Its Generalizations / In Lakemeyer, Gerhard; Nebel, Bernhard. Exploring Artificial Intelligence in the New Millennium. Massachusetts: Morgan Kaufmann, 2003. Pp. 239–236
Zhang X., Gerhard D Chord Recognition using Instrument Voicing Constraints // Proceed-ings of the Ninth International Conference on Music Information Retrieval (ISMIR 2008) (Philadelphia, Pennsylvania, September 14–18, 2008) Pp. 33–38
Балтийский И.А., Николенко С.И Графическая вероятностная модель для оценки схожести гармонии музыкальных произведений // Труды СПИИРАН. СПб.: Наука, 2011
Тулупьев А.Л, Николенко С.И., Сироткин А.В Байесовские сети доверия: логико-вероятностный вывод в ациклических направленных графах. СПб.: Изд-во С.-Петерб. ун-та, 2009, 400 с
Тулупьев А.Л Алгебраические байесовские сети: реализация логико-вероятностного вывода в комплексе java-программ // Труды СПИИРАН. СПб.: Наука, 2009. Вып. 8. С. 191–232
Тулупьев А.Л Задача локального автоматического обучения в алгебраических байе-совских сетях: логико-вероятностный подход // Труды СПИИРАН. 2008. Вып. 7. СПб.: Наука, 2008. С. 11–25
Тулупьев А.Л., Николенко С.И., Сироткин А.В Байесовские сети: логико-вероятностный подход. СПб.: Наука, 2006. 608 с
Фильченков А.А., Тулупьев А.Л Структурный анализ систем минимальных графов смежности // Труды СПИИРАН. 2009. Вып. 11. С. 104–127
Опубликован
2011-06-01
Как цитировать
Балтийский, И. А., & Николенко, С. И. (2011). Обзор графических вероятностных моделей гармонии для анализа музыкальных произведений. Труды СПИИРАН, 2(17), 174-196. https://doi.org/10.15622/sp.17.9
Раздел
Статьи
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями:
Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале.
Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале.
Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).