Метод оценки времени беспроводной передачи энергетических ресурсов между двумя роботами
Ключевые слова:
мобильная робототехника, беспроводная передача энергии, оценка времени передачи энергии, позиционирование мобильных роботов, техническое зрение, ArUco-маркерАннотация
Энергоемкость аккумуляторов, применяемых в качестве основного источника питания в мобильных робототехнических средствах, определяет время автономной работы робота. Для планирования выполнения группой робототехнических средств задач с точки зрения затрат времени актуально учитывать время, в течение которого заряжается аккумулятор каждого отдельного робота. При использовании беспроводной передачи энергии это время зависит от эффективности системы передачи энергии, а также от мощности передающей части системы, необходимой для пополнения энергоемкости. В настоящей работе предлагается метод оценки времени передачи энергетических ресурсов между двумя роботами с учетом данных параметров. Предлагаемый метод учитывает применение алгоритма конечного позиционирования роботов, оценку линейных смещений между роботами, включает вычисление эффективности, а также определение времени подзарядки с учетом параметров, полученных на предыдущих этапах метода. Алгоритм конечного позиционирования роботов использует алгоритмы обработки данных системы технического зрения робота для поиска реперных маркеров и определения их пространственных характеристик для обеспечения конечного позиционирования мобильных робототехнических платформ. Данные характеристики также применяются для определения линейных смещений между роботами, от которых зависит эффективность передачи энергии. Для ее определения в методе используется математическая модель энергетических характеристик системы беспроводной передачи энергии и полученные линейные смещения. На последнем этапе метода вычисляется время подзарядки аккумулятора мобильного робота с учетом данных с предыдущих этапов. Применение предложенного метода для моделирования позиционирования роботов в некотором наборе точек рабочего пространства позволит уменьшить временные затраты на зарядку аккумулятора робота при использовании беспроводной передачи энергии. В результате моделирования было определено, что передача энергетических ресурсов между роботами происходило с эффективностью в диапазоне от 58,11% до 68,22%, а также из 14 точек позиционирования были определены 3 с наименьшим временем передачи энергии.
Литература
2. Riehl P.S., et al. Wireless power systems for mobile devices supporting inductive and resonant operating modes // IEEE Transactions on Microwave Theory and Techniques. 2015. vol. 63. no. 3. pp. 780–790. https://doi.org/10.1109/TMTT.2015.2398413.
3. Cortes I., Kim W. Autonomous Positioning of a Mobile Robot for Wireless Charging Using Computer Vision and Misalignment-Sensing Coils // 2018 Annual American Control Conference (ACC). 2018. pp. 4324–4329. https://doi.org/10.23919/ACC.2018.8431723.
4. Krestovnikov K., Erashov A. Research of Performance Characteristics of WPT System Associated with Mutual Arrangement of Coils // Electromechanics and Robotics. 2022. pp. 359–369. https://doi.org/10.1007/978-981-16-2814-6_31.
5. Won P., Biglarbegian M., Melek W. Development of an effective docking system for modular mobile self-reconfigurable robots using extended kalman filter and particle filter // Robotics. 2015. vol. 4. no1. pp. 25–49. https://doi.org/10.3390/robotics4010025.
6. Song G., Wang H., Zhang J., Meng T. Automatic docking system for recharging home surveillance robots // IEEE Transactions on Consumer Electronics. 2011. vol. 57. no. 2. pp. 428–435. https://doi.org/10.1109/TCE.2011.5955176.
7. Su K.L., Liao Y.L., Lin S.P., Lin S.F. An interactive auto-recharging system for mobile robots // International Journal of Automation and Smart Technology. 2014. vol. 4. no. 1. pp. 43-53. http://dx.doi.org/10.5875/ausmt.v4i1.197.
8. Vongbunyong S., Thamrongaphichartkul K., Worrasittichai N., Takutruea A. Automatic precision docking for autonomous mobile robot in hospital logistics-case-study: battery charging // IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2021. vol. 1137. no. 1. pp. 012060. doi:10.1088/1757-899X/1137/1/012060.
9. Zhang X., Li X., Zhang X. Automatic Docking and Charging of Mobile Robot Based on Laser Measurement // 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 2021. vol. 5. pp. 2229–2234. https://doi.org/10.1109/IAEAC50856.2021.9390995.
10. Guangrui F., Geng W. Vision-based autonomous docking and re-charging system for mobile robot in warehouse environment // 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE). 2017. pp. 79-83. https://doi.org/10.1109/ICRAE.2017.8291357.
11. Wang Y., Shan M., Yue Y., Wang D. Autonomous target docking of nonholonomic mobile robots using relative pose measurements // IEEE Transactions on Industrial Electronics. 2020. vol. 68. no. 8. pp. 7233–7243. https://doi.org/10.1109/TIE.2020.3001805.
12. Barbosa J., et al. Design and validation of an RGB-D based localization system-integration in a docking system // Journal of Intelligent & Robotic Systems. 2015. vol. 80. no. 3. pp. 423–440. https://doi.org/10.1007/s10846-015-0181-7.
13. Uyar Y.E.A.M.N., et al. Developing and modelling of satellite docking algorithm // 2017 8th International Conference on Recent Advances in Space Technologies (RAST). 2017. pp. 465–471. https://doi.org/10.1109/RAST.2017.8002987.
14. Ivanov D.S., Koptev M.D., Tkachev S.S., Shachkov M.O. Docking algorithm for flexible microsatellite mock-ups on planar air-bearing testbench // Keldysh Institute Preprints. 2017. no. 110. 24 p. https://doi.org/10.20948/prepr-2017-110-e.
15. Barrios L., Collins T., Kovac R., Shen W.M. Autonomous 6D-docking and manipulation with non-stationary-base using self-reconfigurable modular robots // 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016. pp. 2913–2919. https://doi.org/10.1109/IROS.2016.7759451.
16. Yan Z., et al. Autonomous underwater vehicle vision guided docking experiments based on L-shaped light array // IEEE Access. 2019. vol. 7. pp. 72567–72576. https://doi.org/10.1109/ACCESS.2019.2917791.
17. Babić A., Mandić F., Vasiljević G., Mišković N. Autonomous docking and energy sharing between two types of robotic agents // IFAC-PapersOnLine. 2018. vol. 51. no. 29. pp. 406–411. https://doi.org/10.1016/j.ifacol.2018.09.453.
18. Guo S., et al. Binocular Camera-based a Docking System for an Amphibious Spherical Robot // 2018 IEEE International Conference on Mechatronics and Automation (ICMA). 2018. pp. 1621–1626. https://doi.org/10.1109/ICMA.2018.8484518.
19. Henriques J.F., Caseiro R., Martins P., Batista J. High-speed tracking with kernelized correlation filters // IEEE transactions on pattern analysis and machine intelligence. 2014. vol. 37. no. 3. pp. 583–596. https://doi.org/10.1109/TPAMI.2014.2345390.
20. Doumbia M., Cheng X., Havyarimana V. An auto-recharging system design and implementation based on infrared signal for autonomous robots // 2019 5th International Conference on Control, Automation and Robotics (ICCAR). 2019. pp. 894–900. https://doi.org/10.1109/ICCAR.2019.8813317.
21. Zhang J., Cai L., Chu Y., Zhou Q. A Sectional Auto-docking Charging Control Method for the Mobile Robot // 2019 IEEE International Conference on Mechatronics and Automation (ICMA). 2019. pp. 330–335. https://doi.org/10.1109/ICMA.2019.8816514.
22. Luo R.C., Huang C.H., Huang C.Y. Search and track power charge docking station based on sound source for autonomous mobile robot applications // 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010. pp. 1347–1352. https://doi.org/10.1109/IROS.2010.5649993.
23. Quilez R., Zeeman A., Mitton, N., Vandaele J. Docking autonomous robots in passive docks with Infrared sensors and QR codes // International Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities (TridentCOM). 2015. 10 p.
24. Kalaitzakis M., et al. Experimental comparison of fiducial markers for pose estimation // 2020 International Conference on Unmanned Aircraft Systems (ICUAS). 2020. pp. 781–789. https://doi.org/10.1109/ICUAS48674.2020.9213977.
25. Крестовников К.Д., Черских Е.О. Шабанова А.Р. Схемотехнические и конструктивные решения на основе синхронного выпрямителя для беспроводной системы передачи энергии // Моделирование, оптимизация и информационные технологии. 2019. Т. 7. №4. С. 15. https://doi.org/10.26102/2310-6018/2019.27.4.018.
26. Krestovnikov K., Cherskikh E., Saveliev A. Structure and Circuit Solution of a Bidirectional Wireless Power Transmission System in Applied Robotics // Radioengineering. 2021. vol. 30. no. 1. pp. 142–149. https://doi.org/10.13164/re.2021.0142.
27. Сайт с исходными файлами библиотеки OpenCV для языка программирования Python. URL: github.com/opencv/opencv-python (дата обращения 22.09.2021).
28. Zakharov K., Saveliev A., Sivchenko O. Energy-Efficient Path Planning Algorithm on Three-Dimensional Large-Scale Terrain Maps for Mobile Robots // Springer, Cham: International Conference on Interactive Collaborative Robotics. 2020. pp. 319–330. https://doi.org/10.1007/978-3-030-60337-3.
29. Захаров К.С., Савельев А.И. Сглаживание кривизны траектории движения наземного робота в трехмерном пространстве // Известия Юго-Западного государственного университета. 2021. Т. 24. №4. С. 107–125. https://doi.org/10.21869/2223-1560-2020-24-4-107-125.
30. Craig J.J. Introduction to robotics: mechanics and control, 3/E. – Pearson Education India, 2009. 408 p.
31. Спецификация мобильной платформы Pioneer 3-AT. URL: www.generationrobots.com/media/Pioneer3AT-P3AT-RevA-datasheet.pdf (дата обращения 22.09.2021).
Опубликован
Как цитировать
Раздел
Copyright (c) Aleksei Alekseevich Erashov
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).