Аналитический обзор подходов к обнаружению вторжений, основанных на федеративном обучении: преимущества использования и открытые задачи
Ключевые слова:
обнаружение вторжений, аномалии, федеративное обучение, модели анализа, разделение данныхАннотация
Для обеспечения точного и своевременного реагирования на различные типы атак системы обнаружения вторжений собирают и анализируют большое количество данных, которые могут включать в том числе и информацию с ограниченным доступом, например, персональные данные или данные, представляющие коммерческую тайну. Следовательно, такие системы могут быть рассмотрены как источник рисков, связанных с обработкой конфиденциальной информации и нарушением ее безопасности. Применение парадигмы федеративного обучения для построения аналитических моделей обнаружения атак и аномалий может значительно снизить такие риски, поскольку данные, генерируемые локально, не передаются какой-либо третьей стороне, а обучение модели осуществляется локально – на источниках данных. Использование федеративного обучения для обнаружения вторжений позволяет решить проблему обучения на данных, которые принадлежат различным организациям, и которые в силу необходимости обеспечения защиты коммерческой или другой тайны, не могут быть выложены в открытый доступ. Таким образом, данный подход позволяет также расширить и разнообразить множество данных, на которых обучаются аналитические модели анализа и повысить тем самым уровень детектируемости разнородных атак. Благодаря тому, что этот подход способен преодолеть вышеупомянутые проблемы, он активно используется для проектирования новых подходов к обнаружению вторжений и аномалий. Авторы систематизировано исследуют существующие решения для обнаружения вторжений и аномалий на основе федеративного обучения, изучают их преимущества, а также формулируют открытые проблемы, связанные с его применением на практике. Особое внимание уделяется архитектуре предлагаемых систем, применяемым методам и моделям обнаружения вторжений, а также обсуждаются подходы к моделированию взаимодействия между множеством пользователей системы и распределению данных между ними. В заключении авторы формулируют открытые задачи, требующие решения для применения систем обнаружения вторжений, основанных на федеративном обучении, на практике.
Литература
2. Lwakatare L.E., Raj A., Bosch J., Olsson H.H., Crnkovic I.A Taxonomy of Software Engineering Challenges for Machine Learning Systems: An Empirical Investigation (Eds.: Kruchten P., Fraser S., Coallier F.) // Agile Processes in Software Engineering and Extreme Programming: Proceedings of 20th International Conference. 2019. pp. 227–243.
3. Antonakakis M., April T., Bailey M., Bernhard M., Bursztein E., Cochran J., Durumeric Z., Halderman J.A., Invernizzi L., Kallitsis M., Kumar D., Lever C., Ma Z., Mason J., Menscher D., Seaman C., Thomas K., Zhou Y. Understanding the Mirai Botnet // 26th USENIX Security Symposium (USENIX Security 17). 2017. pp. 1093–1110.
4. Novikova E., Doynikova E., Golubev S. Federated Learning for Intrusion Detection in the Critical Infrastructures: Vertically Partitioned Data Use Case // Algorithms. 2022. vol. 15(4). no. 104. DOI: 10.3390/a15040104.
5. Ludwig H, et al. IBM Federated Learning: an Enterprise Framework White Paper V0.1. ArXiv preprint arXiv:2007.10987. 2020.
6. Lo S.K. Lu Q., Zhu L., Paik H.Y., Xu X., Wang C. Architectural Patterns for the Design of Federated Learning Systems // Journal of Systems and Software. 2022. vol. 191. no. 111357.
7. Sannara E.K., Portet F., Lalanda P., German V.E.G.A. A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison // IEEE International Conference on Pervasive Computing and Communications (PerCom). 2021. pp. 1–10. DOI: 10.1109/PERCOM50583.2021.9439129.
8. Yurochkin M., Agarwal M., Ghosh S., Greenewald K., Hoang N., Khazaeni Y. Bayesian Nonparametric Federated Learning of Neural Networks // International conference on machine learning. 2019. pp. 7252–7261.
9. Mansour A.B., Carenini G., Duplessis A., Naccache D. Federated Learning Aggregation: New Robust Algorithms with Guarantees. 21st IEEE International Conference on Machine Learning and Applications (ICMLA). 2022. pp. 721–726. DOI: 10.48550/ARXIV.2205.10864.
10. Shahid O., Pouriyeh S., Parizi R.M., Sheng Q.Z., Srivastava G., Zhao L. Communication Efficiency in Federated Learning: Achievements and Challenges // ArXiv preprint arXiv:2107.10996. 2021.
11. Juvekar C., Vaikuntanathan V., Chandrakasan A. GAZELLE: A Low Latency Framework for Secure Neural Network Inference // Proceedings of the 27th USENIX Security Symposium (USENIX Security 18). 2018. pp. 1651–1669.
12. Zhang C., Li S., Xia J., Wang W., Yan F., Liu Y. BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning // Proceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference. USENIX annual technical conference (USENIX ATC 20). 2020. pp. 493–506.
13. Kairouz P., et al. Advances and Open Problems in Federated Learning. Foundations and Trends in Machine Learning. 2021. vol. 14. no. 1–2. pp. 1–210.
14. Truex S., Liu L., Chow K.H., Gursoy M.E., Wei W. LDP-Fed: federated learning with local differential privacy // Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking. 2020. pp. 61–66.
15. Shokri R., Shmatikov V. Privacy-preserving deep learning // Proceedings of the 22nd ACM SIGSAC conference on computer and communications security. 2015. pp. 1310–1321. DOI: 10.1109/ALLERTON.2015.7447103.
16. Novikova E, Fomichov D., Kholod I., Filippov E. Analysis of Privacy-Enhancing Technologies in Open-Source Federated Learning Frameworks for Driver Activity Recognition // Sensors. 2022. vol. 22(8). no. 2983. DOI: 10.3390/s22082983.
17. Запечников С. Модели и алгоритмы конфиденциального машинного обучения // Безопасность информационных технологий. 2020. Т. 27. № 1. С. 51–67. DOI: 10.26583/bit.2020.1.05.
18. Rieke N., Hancox J., Li W., Milletarì F., Roth H.R., Albarqouni S., Bakas S., Galtier M.N., Landman B.A., Maier-Hein K., Ourselin S., Sheller M., Summers R.M., Trask A., Xu D., Baust M., Cardoso M.J. The future of digital health with federated learning // NPJ Digital Medicine. 2020. vol. 3. no. 119. DOI: 10.1038/s41746-020-00323-1.
19. Antunes R.S., André da Costa C., Küderle A., Yari I.A., Eskofier B. Federated Learning for Healthcare: Systematic Review and Architecture Proposal // ACM Transactions on Intelligent Systems and Technology (TIST). 2022. vol. 13(4). no. 54. DOI: 10.1145/3501813.
20. Nguyen T.D., Marchal S., Miettinen M., Fereidooni H., Asokan N., Sadeghi A.R. DIoT: A Federated Self-learning Anomaly Detection System for IoT // IEEE 39th International Conference on Distributed Computing Systems (ICDCS). 2019. pp. 756–767.
21. Li B., Wu Y., Song J., Lu R., Li T., Zhao L. DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber-Physical Systems // IEEE Transactions on Industrial Informatics. 2020. vol. 17. no. 8. pp. 5615–5624. DOI: 10.1109/TII.2020.3023430.
22. Rey V., Sánchez P.M.S., Celdrán A.H., Bovet G. Federated learning for malware detection in IoT devices // Computer Networks. 2022. vol. 204. no. 108693. DOI: 10.1016/j.comnet.2021.108693.
23. Huong T.T., Bac T.P., Long D.M., Thang B.D., Binh N.T., Luong T.D., Phuc T.K. LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing // IEEE Access. 2021. vol. 9. pp. 29696–29710. DOI: 10.1109/ACCESS.2021.3058528.
24. Khoa T.V., Saputra Y.M., Hoang D.T., Trung N.L., Nguyen D., Ha N.V., Dutkiewicz E. Collaborative Learning Model for Cyberattack Detection Systems in IoT Industry 4.0 // IEEE Wireless Communications and Networking Conference (WCNC). 2020. pp. 1–6. DOI: 10.1109/WCNC45663.2020.9120761.
25. Long G., Tan Y., Jiang J., Zhang C. Federated Learning for Open Banking // Federated Learning: Privacy and Incentive. 2020. pp. 240–254.
26. Ahmed U., Srivastava G., Lin J.C.-W. Reliable customer analysis using federated learning and exploring deep-attention edge intelligence // Future Generation Computer Systems. 2022. vol. 127. pp. 70–79. DOI: 10.1016/j.future.2021.08.028.
27. Li J., Cui T., Yang K., Yuan R., He L., Li M. Demand Forecasting of E-Commerce Enterprises Based on Horizontal Federated Learning from the Perspective of Sustainable Development // Sustainability. 2021. vol. 13(23). no. 13050. DOI: 10.3390/su132313050.
28. Дзюба В.И. Применение концепции федеративного обучения для решения задачи классификации текста // Процессы управления и устойчивость. 2022. Т. 9. № 1. С. 210–214.
29. Гонсалес П.Ю., Холод И.И. Архитектура многоагентных систем для федеративного обучения. Компьютерные инструменты в образовании. 2022. № 1. С. 30–45. DOI: 10.32603/2071-2340-2022-1-30-45.
30. Холод И.И., Ефремов М.А. Разработка архитектуры универсального фреймворка федеративного обучения // Программные продукты и системы. 2022. Т. 35. № 2. С. 263–272. DOI: 10.15827/0236-235X.138.263-272.
31. Swarm learning: Driving advances both practical and profound. URL: https://www.hpe.com/us/en/insights/articles/swarm-learning-driving- advances-both-practical-and-profound-2111.html. (accessed 24.10.2022).
32. Bellatreche L., Boukhalfa K., Richard P. Data Partitioning in Data Warehouses: Hardness Study, Heuristics and ORACLE Validation // Data Warehousing and Knowledge Discovery: Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery. 2008. pp. 87–96. DOI: 10.1007/978-3-540-85836-2_9.
33. Khraisat A., Gondal I., Vamplew P., Kamruzzaman J. Survey of intrusion detection systems: techniques, datasets and challenges // Cybersecurity. 2019. vol. 2. no. 1. pp. 1–22. DOI: 10.1186/s42400-019-0038-7.
34. Kotenko I., Saenko I., Branitskiy A. Framework for Mobile Internet of Things Security Monitoring Based on Big Data Processing and Machine Learning // IEEE Access. 2018. vol. 6. pp. 72714–72723. DOI: 10.1109/ACCESS.2018.2881998.
35. Bukhanov D.G., Polyakov V.M. Detection of network attacks based on adaptive resonance theory // Journal of Physics: Conference Series. 2018. vol. 1015(4). no. 042007. DOI: 10.1088/1742-6596/1015/4/042007.
36. Yunwu W. Using Fuzzy Expert System Based on Genetic Algorithms for Intrusion Detection System // International Forum on Information Technology and Applications. 2009. vol. 2. pp. 221–224. DOI: 10.1109/IFITA.2009.107.
37. Dave M.H., Sharma S.D. Improved Algorithm for Intrusion Detection Using Genetic Algorithm and SNORT. International Journal of Emerging Technology and Advanced Engineering. 2014. vol. 4. no. 8. pp. 273–276.
38. Ranjan R., Sahoo G. A New Clustering Approach for Anomaly Intrusion Detection // International Journal of Data Mining and Knowledge Management Process (IJDKP). 2014. vol. 4. no. 2. pp. 29–38. DOI: 10.5121/ijdkp.2014.4203.
39. Li Z., Qin Z., Huang K., Yang X., Ye S. Intrusion Detection Using Convolutional Neural Networks for Representation Learning // International conference on neural information processing. 2017. pp. 858–866.
40. Hu J., Liu C., Cui Y. An Improved CNN Approach for Network Intrusion Detection System // International Journal of Network Security. 2021. vol. 23. no. 4. pp. 569–575.
41. Vinayakumar R., Soman K., Poornachandran P. Evaluation of Recurrent Neural Network and Its Variants for Intrusion Detection System IDS // International Journal of Information System Modeling and Design (IJISMD). 2017. vol. 8. no. 3. pp. 43–63.
42. Song Y., Hyun S., Cheong Y.-G. Analysis of Autoencoders for Network Intrusion Detection // Sensors. 2021. vol. 21(13). no. 4294. DOI: 10.3390/s21134294.
43. Gajewski M., Batalla J.M., Mastorakis G., Mavromoustakis C.X. A distributed IDS architecture model for Smart Home systems // Cluster Computing. 2019. vol. 22. pp. 1739–1749.
44. Shterenberg S.I., Poltavtseva M.A. A Distributed Intrusion Detection System with Protection from an Internal Intruder // Automatic Control and Computer Sciences. 2018. vol. 52. pp. 945–953.
45. Schueller Q., Basu K., Younas M., Patel M., Ball F. A Hierarchical Intrusion Detection System using Support Vector Machine for SDN Network in Cloud Data Center // 28th International Telecommunication Networks and Applications Conference (ITNAC). 2018. pp. 1–6. DOI: 10.1109/ATNAC.2018.8615255.
46. Saghezchi F.B., Mantas G., Ribeiro J., Al-Rawi M., Mumtaz S., Rodriguez J. Towards a secure network architecture for smart grids in 5G era // 13th International Wireless Communications and Mobile Computing Conference (IWCMC). 2017. pp. 121–126. DOI: 10.1109/IWCMC.2017.7986273.
47. Zhang Y. Distributed Intrusion Detection System in a Multi-Layer Network Architecture of Smart Grids // IEEE Transactions on Smart Grid. 2011. vol. 2. no. 4. pp. 796–808. DOI: 10.1109/TSG.2011.2159818.
48. Javed Y., Felemban M., Shawly T., Kobes J., Ghafoor A. A Partition-Driven Integrated Security Architecture for Cyberphysical Systems // Computer. 2020. vol. 53. no. 3. pp. 47–56. DOI: 10.1109/MC.2019.2914906.
49. Kholod I., Yanaki E., Fomichev D., Shalugin E., Novikova E., Filippov E., Nordlund M. Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis // Sensors. 2020. vol. 21(1). no. 167. DOI: 10.3390/s21010167.
50. Kitchenham B.A. Procedures for Performing Systematic Reviews // Keele, UK, Keele University. 2004. vol. 33. pp. 1–26.
51. Campos E.M., Saura P.F., González-Vidal A., Hernández-Ramos J.L., Bernabé J.B., Baldini G., Skarmeta A. Evaluating Federated Learning for intrusion detection in Internet of Things: Review and challenges // Computer Networks. 2022. vol. 203. no. 108661. DOI: 10.1016/j.comnet.2021.108661.
52. Agrawal S., Sarkar S., Aouedi O., Yenduri G., Piamrat K., Alazab M., Bhattacharya S., Reddy Maddikunta P.K., Gadekallu T.R. Federated Learning for Intrusion Detection System: Concepts, Challenges and Future Directions // Computer Communications. 2022. vol. 195. pp. 346–361. DOI: 10.1016/j.comcom.2022.09.012.
53. Sun Y., Ochiai H., Esaki H. Intrusion Detection with Segmented Federated Learning for Large-Scale Multiple LANs // International Joint Conference on Neural Networks (IJCNN). 2020. pp. 1–8. DOI: 10.1109/IJCNN48605.2020.9207094.
54. Zhao R., Yin Y., Shi Y., Xue Z. Intelligent intrusion detection based on federated learning aided long short-term memory // Physical Communication. 2020. vol. 42. no. 101157. DOI: 10.1016/j.phycom.2020.101157.
55. Kholidy H.A., Baiardi F., Hariri S. DDSGA: A Data-Driven Semi-Global Alignment Approach for Detecting Masquerade Attacks // IEEE Transactions on Dependable and Secure Computing. 2014. vol. 12. no. 2. pp. 164–178. DOI: 10.1109/TDSC.2014.2327966.
56. Saadat H., Aboumadi A., Mohamed A., Erbad A., Guizani M. Hierarchical Federated Learning for Collaborative IDS in IoT Applications // 10th Mediterranean Conference on Embedded Computing (MECO). 2021. pp. 1–6. DOI: 10.1109/MECO52532.2021.9460304.
57. University of New Brunswick dataset. NSL-KDD dataset. URL: https://www.unb.ca/cic/datasets/nsl.html. (accessed 15.05.2022).
58. Cetin B, Lazar A., Kim J., Sim A., Wu K. Federated Wireless Network Intrusion Detection // IEEE International Conference on Big Data (Big Data). 2019. pp. 6004–6006. DOI: 10.1109/BigData47090.2019.9005507.
59. Kolias C., Kambourakis G., Stavrou A., Gritzalis S. Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset // IEEE Communications Surveys and Tutorials. 2015. vol. 18. no. 1. pp. 184–208. DOI: 10.1109/COMST.2015.2402161.
60. Ayed M.A., Talhi C. Federated Learning for Anomaly-Based Intrusion Detection // International Symposium on Networks, Computers and Communications (ISNCC). 2021. pp. 1–8. DOI: 10.1109/ISNCC52172.2021.9615816.
61. Sharafaldin I., Lashkari A.H., Ghorbani A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization // International Conference on Information Systems Security and Privacy (ICISS). 2018. vol. 1. pp. 108–116.
62. Luo J., Yang X., Mohammed M.N. Federation Learning for Intrusion Detection Methods by Parse Convolutional Neural Network // Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). 2022. pp. 1–7. DOI: 10.1109/ICAECT54875.2022.9807989.
63. Zhao R., Wang Y., Xue Z., Ohtsuki T., Adebisi B., Gui G. Semisupervised Federated-Learning Based Intrusion Detection Method for Internet of Things // IEEE Internet of Things Journal. 2022. vol. 10. pp. 8645–8657. DOI: 10.1109/JIOT.2022.3175918.
64. Meidan Y., Bohadana M., Mathov Y., Mirsky Y., Shabtai A., Breitenbacher D., Elovici Y. N-BaIoT-Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders // IEEE Pervasive Computing. 2018. vol. 17. no. 3. pp. 12–22. DOI: 10.1109/MPRV.2018.03367731.
65. Yang X., Luo J., Mohammed M.N. Federation Learning of Optimized Convolutional Neural Network Structure for Intrusion Detection // Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). 2022. pp. 1–7. DOI: 10.1109/ICAECT54875.2022.9807964.
66. Shi J., Ge B., Liu Y., Yan Y., Li S. Data Privacy Security Guaranteed Network Intrusion Detection System Based on Federated Learning // IEEE INFOCOM 2021 – IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2021. pp. 1–6. DOI: 10.1109/INFOCOMWKSHPS51825.2021.9484545.
67. Moustafa N., Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) // Military Communications and Information Systems Conference (MilCIS). 2015. pp. 1–6. DOI: 10.1109/MilCIS.2015.7348942.
68. Duy P.T., Van Hung T., Ha N.H., Do Hoang H., Pham V.H. Federated learning-based intrusion detection in SDN-enabled IIoT networks // 8th NAFOSTED Conference on Information and Computer Science (NICS). 2021. pp. 424–429. DOI: 10.1109/NICS54270.2021.9701525.
69. Sharafaldin I., Lashkari A.H., Hakak S., Ghorbani A.A. Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy // International Carnahan Conference on Security Technology (ICCST). 2019. pp. 1–8. DOI: 10.1109/CCST.2019.8888419.
70. Cheng Y., Lu J., Niyato D., Lyu B., Kang J., Zhu S. Federated Transfer Learning With Client Selection for Intrusion Detection in Mobile Edge Computing // IEEE Communications Letters. 2022. vol. 26. no. 3. pp. 552–556. DOI: 10.1109/LCOMM.2022.3140273.
71. Wang N., Chen Y., Hu Y., Lou W., Hou Y.T. FeCo: Boosting Intrusion Detection Capability in IoT Networks via Contrastive Learning // IEEE INFOCOM 2022 – IEEE Conference on Computer Communications. 2022. pp. 1409–1418. DOI: 10.1109/INFOCOM48880.2022.9796926.
72. Popoola S.I., Gui G., Adebisi B., Hammoudeh M., Gacanin H. Federated Deep Learning for Collaborative Intrusion Detection in Heterogeneous Networks // IEEE 94th Vehicular Technology Conference (VTC2021-Fall). 2021. pp. 1–6. DOI: 10.1109/VTC2021-Fall52928.2021.9625505.
73. Alsaedi A., Moustafa N., Tari Z., Mahmood A., Anwar A. TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems // IEEE Access. 2020. vol. 8. pp. 165130–165150. DOI: 10.1109/ACCESS.2020.3022862.
74. Koroniotis N., Moustafa N., Sitnikova E., Turnbull B. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot- IoT dataset // Future Generation Computer Systems. 2019. vol. 100. pp. 779–796. DOI: 10.1016/j.future.2019.05.041.
75. Al-Marri N.A.A.-A., Ciftler B.S., Abdallah M.M. Federated Mimic Learning for Privacy Preserving Intrusion Detection // IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). 2020. pp. 1–6.
76. Mothukuri V., Khare P., Parizi R.M., Pouriyeh S., Dehghantanha A., Srivastava G. Federated-Learning-Based Anomaly Detection for IoT Security Attacks // IEEE Internet of Things Journal. 2021. vol. 9. no. 4. pp. 2545–2554. DOI: 10.1109/JIOT.2021.3077803.
77. Frazao I., Abreu P.H., Cruz T., Araújo H., Simões P. Denial of Service Attacks: Detecting the Frailties of Machine Learning Algorithms in the Classification Process // Critical Information Infrastructures Security 13th International Conference (CRITIS 2018). 2019. pp. 230–235.
78. Ruzafa-Alcazar P., Fernández-Saura P., Mármol-Campos E., González-Vidal A., Hernández-Ramos J.L., Bernal-Bernabe J., Skarmeta A.F. Intrusion Detection Based on Privacy- Preserving Federated Learning for the Industrial IoT // IEEE Transactions on Industrial Informatics. 2021. vol. 19. no. 2. pp. 1145–1154. DOI: 10.1109/TII.2021.3126728.
79. Chen Z., Lv N., Liu P., Fang Y., Chen K., Pan W. Intrusion Detection for Wireless Edge Networks Based on Federated Learning // IEEE Access. 2020. vol. 8. pp. 217463–217472. DOI: 10.1109/ACCESS.2020.3041793.
80. KDD dataset. URL: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. (accessed 15.03.2022).
81. Dong T., Qiu H., Lu J., Qiu M., Fan C. Towards Fast Network Intrusion Detection based on Efficiency-preserving Federated Learning // IEEE Intl Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing & Communications, Social Computing and Networking (ISPA/BDCloud/SocialCom/SustainCom). 2021. pp. 468–475. DOI: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00071.
82. Tabassum A., Erbad A., Lebda W., Mohamed A., Guizani M FEDGAN-IDS: Privacy-preserving IDS using GAN and Federated Learning // Computer Communications. 2022. vol. 192. pp. 299–310. DOI: 10.1016/j.comcom.2022.06.015.
83. Aouedi O., Piamrat K., Muller G., Singh K. FLUIDS: Federated Learning with semi- supervised approach for Intrusion Detection System // IEEE 19th Annual Consumer Communications and Networking Conference (CCNC). 2022. pp. 523–524. DOI: 10.1109/CCNC49033.2022.9700632.
84. Qin Y., Kondo M. Federated Learning-Based Network Intrusion Detection with a Feature Selection Approach // International Conference on Electrical, Communication, and Computer Engineering (ICECCE). 2021. pp. 1–6. DOI: 10.1109/ICECCE52056.2021.9514222.
85. Nguyen T.D., Marchal S., Miettinen M., Fereidooni H., Asokan N., Sadeghi A.R. DIoT: A Federated Self-learning Anomaly Detection System for IoT // IEEE 39th International Conference on Distributed Computing Systems (ICDCS). 2019. pp. 756–767.
86. Qin T., Cheng G., Chen W., Lei X. FNEL: An Evolving Intrusion Detection System Based on Federated Never-Ending Learning // 17th International Conference on Mobility, Sensing and Networking (MSN). 2021. pp. 239–246. DOI: 10.1109/MSN53354.2021.00047.
87. Fan Y., Li Y., Zhan M., Cui H., Zhang Y. IoTDefender: A Federated Transfer Learning Intrusion Detection Framework for 5G IoT // IEEE 14th International Conference on Big Data Science and Engineering (BigDataSE). 2020. pp. 88–95. DOI: 10.1109/BigDataSE50710.2020.00020.
88. Kang H., Ahn D.H., Lee G.M., Yoo J., Park K.H., Kim H.K. IoT network intrusion dataset. IEEE Dataport. 2019. vol. 10. DOI: 10.21227/q70p-q449.
89. Mirzaee P.H., Shojafar M., Pooranian Z., Asefy P., Cruickshank H., Tafazolli R. FIDS: A Federated Intrusion Detection System for 5G Smart Metering Network // 17th International Conference on Mobility, Sensing and Networking (MSN). 2021. pp. 215–222. DOI: 10.1109/MSN53354.2021.00044.
90. Regan C., Nasajpour M., Parizi R.M., Pouriyeh S., Dehghantanha A., Choo K.K.R. Federated IoT security attack detection using decentralized edge data // Machine Learning with Applications. 2022. vol. 8. no. 100263. DOI: 10.1016/j.mlwa.2022.100263.
91. Singh P., Gaba G. S., Kaur A., Hedabou M., Gurtov A. Dew-Cloud-Based Hierarchical Federated Learning for Intrusion Detection in IoMT // IEEE Journal of Biomedical and Health Informatics. 2022. vol. 27. no. 2. pp. 722–731. DOI: 10.1109/JBHI.2022.3186250.
92. Astillo P.V. Federated intelligence of anomaly detection agent in IoTMD-enabled Diabetes Management Control System // Future Generation Computer Systems. 2022. vol. 128. pp. 395–405. DOI: 10.1016/j.future.2021.10.023.
93. Astillo P.V., Jeong J., Chien W.C., Kim B., Jang J., You I. SMDAps: A specification-based misbehavior detection system for implantable devices in artificial pancreas system // Journal of Internet Technology. 2021. vol. 22. no. 1. pp. 1–11.
94. Siniosoglou I., Sarigiannidis P., Argyriou V., Lagkas T., Goudos S.K., Poveda M. Federated Intrusion Detection In NG- IoT Healthcare Systems: An Adversarial Approach // ICC 2021 – IEEE International Conference on Communications. 2021. pp. 1–6. DOI: 10.1109/ICC42927.2021.9500578.
95. Kim N.H., Krasner A., Kosinski C., Wininger M., Qadri M., Kappus Z., Danish S., Craelius W. Trending autoregulatory indices during treatment for traumatic brain injury // Journal of Clinical Monitoring and Computing. 2016. vol. 30. pp. 821–831.
96. Li B., Wu Y., Song J., Lu R., Li T., Zhao L. DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber–Physical Systems // IEEE Transactions on Industrial Informatics. 2020. vol. 17. no. 8. pp. 5615–5624. DOI: 10.1109/TII.2020.3023430.
97. Morris T., Gao W. Industrial Control System Traffic Data Sets for Intrusion Detection Research // Critical Infrastructure Protection VIII: 8th IFIP WG 11.10 International Conference (ICCIP). 2014. pp. 65–78.
98. Aouedi O., Piamrat K., Muller G., Singh K. Federated Semisupervised Learning for Attack Detection in Industrial Internet of Things // IEEE Transactions on Industrial Informatics. 2022. vol. 19. no. 1. pp. 286–295. DOI: 10.1109/TII.2022.3156642.
99. Truong T., Ta B.P., Le Q.A., Nguyen D.M., Le C.T., Nguyen H.X., Do H.T., Nguyen H.T., Tran K.P. Light-weight federated learning- based anomaly detection for time-series data in industrial control systems // Computers in Industry. 2022. vol. 140. no. 103692. DOI: 10.1016/j.compind.2022.103692.
100. Turnipseed I.P. A new scada dataset for intrusion detection research // Mississippi State University. 2015.
101. Secure Water Treatment (SWaT). URL: https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/. (accessed 25.06.2022).
102. HAI (HIL-based Augmented ICS) Security Dataset. URL: https://github.com/icsdataset/hai. (accessed 01.03.2023).
103. Keogh E., Lin J., Fu A. HOT SAX: efficiently finding the most unusual time series subsequence // Fifth IEEE International Conference on Data Mining (ICDM’05). 2005. pp. 226–233. DOI: 10.1109/ICDM.2005.79.
104. NYC taxi and limousine commission. URL: https://www.nyc.gov/site/tlc/index.page. (accessed 01.03.2023).
105. Liu H., Zhang S., Zhang P., Zhou X., Shao X., Pu G., Zhang Y. Blockchain and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge Computing // IEEE Transactions on Vehicular Technology. 2021. vol. 70. no. 6. pp. 6073–6084. DOI: 10.1109/TVT.2021.3076780.
106. Abdel-Basset M., Moustafa N., Hawash H., Razzak I., Sallam K.M., Elkomy O.M. Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems // IEEE Transactions on Intelligent Transportation Systems. 2021. vol. 23. no. 3. pp. 2523–2537. DOI: 10.1109/TITS.2021.3119968.
107. Aliyu I., Feliciano M.C., Van Engelenburg S., Kim D.O., Lim C. G.A Blockchain-Based Federated Forest for SDN – Enabled In-Vehicle Network Intrusion Detection System // IEEE Access. 2021. vol. 9. pp. 102593–102608. DOI: 10.1109/ACCESS.2021.3094365.
108. Li Q., He B., Song D. Model-Contrastive Federated Learning. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021. pp. 10713–10722.
109. McMahan H., Moore E., Ramage D., Arcas B.A. Federated Learning of Deep Networks using Model Averaging. ArXiv preprint arXiv:1602.05629. 2016. URL: https://fate.fedai.org/. (accessed 25.06.2022).
110. FATE. An Industrial Grade Federated Learning Framework. URL: https://fate.fedai.org/. (accessed 25.06.2022).
111. Yin D., Chen Y., Kannan R., Bartlett P. Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates // Proceedings of the 35th International Conference on Machine Learning. 2018. vol. 80. pp. 5650–5659.
Опубликован
Как цитировать
Раздел
Copyright (c) Евгения Сергеевна Новикова, Елена Владимировна Федорченко, Игорь Витальевич Котенко, Иван Иванович Холод
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).