Краткий обзор методов сетевой стеганографии
Ключевые слова:
сетевая стеганография, модель взаимосвязи открытых систем, протокол, пропускная способность, возможности внедрения, физический уровень, канальный уровень, сетевой уровень, уровень передачи, прикладной уровеньАннотация
Цифровые мультимедийные файлы 2D и 3D обладают многочисленными преимуществами, такими как отличное качество, сжатие, редактирование, надежное копирование и т. д. С другой стороны, эти качества мультимедийных файлов являются причиной опасений, в том числе боязни получить доступ к данным во время общения. Стеганография играет важную роль в обеспечении безопасности передаваемых данных. Изменение типа файла покрытия с цифровых мультимедийных файлов на протоколы повышает безопасность системы связи. Протоколы являются неотъемлемой частью системы связи, и эти протоколы также могут использоваться для сокрытия секретных данных, что снижает вероятность их обнаружения. Этот документ призван помочь улучшить существующие методы сетевой стеганографии за счет увеличения пропускной способности и снижения скорости обнаружения путем анализа предыдущей связанной работы. Были изучены, проанализированы и обобщены последние статьи о методах сетевой стеганографии за последний 21 год. Этот обзор может помочь исследователям понять существующие тенденции в методах сетевой стеганографии, чтобы продолжить работу в этой области для улучшения алгоритмов. Статья разделена по уровням модели OSI.
Литература
2. Smolarczyk M., Szczypiorski K., Pawluk J. Multilayer detection of network steganography. Electronics. 2020. vol. 9. no. 12. pp. 1–14. DOI: 10.3390/electronics9122128.
3. Szczypiorski K. HICCUPS: Hidden communication system for corrupted networks. Internation Multi-Conference Advance Computing System. 2003. pp. 31–40.
4. Sekhar A., Kumar G.M., M A.R. A Novel Approach for Hiding Data in Videos Using Network Steganography Methods. Procedia Computer Science. 2015. vol. 7. no. 4. pp. 49–61. DOI: 10.5121/ijwmn.2015.7404.
5. Almohammedi A.A., Shepelev V. Saturation Throughput Analysis of Steganography in the IEEE 802.11p Protocol in the Presence of Non-Ideal Transmission Channel. IEEE Access. 2021. vol. 9. pp. 14459–14469. DOI: 10.1109/ACCESS.2021.3052464.
6. Seo J.O., Manoharan S., Mahanti A. A Discussion and Review of Network Steganography. IEEE 14th International Confernce Pervasive Intelligent Computer. 2016. pp. 384–391. DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.80.
7. Ouda A.H., El-Sakka M.R. A step towards practical steganography systems. Lecture Notes Computer Science. LNCS. 2005. vol. 3656. pp. 1158–1166. DOI: 10.1007/11559573_140.
8. Tanwar R., Pilania U., Zamani M., Manaf A.A. An Analysis of 3D Steganography Techniques. Electronics. 2021. vol. 10. no. 19. p. 2357. DOI: 10.3390/electronics10192357.
9. Nair A.S., Kumar A., Sur A., Nandi S.иLength based network steganography using UDP protocol. IEEE 3rd International Conference Communication Software Networks, ICCSN 2011. 2011. pp. 726–730. DOI: 10.1109/ICCSN.2011.6014994.
10. Zander S., Armitage G., Branch P. A survey of covert channels and countermeasures in computer network protocols. IEEE Communications Surveys and Tutorials 2007. vol. 9. no. 3. pp. 44–57.
11. Huang Z., Sun X., Luo J., Wang J. Security Against Hardware Trojan Attacks Through a Novel Chaos FSM and Delay Chains Array PUF Based Design Obfuscation Scheme. Lecture Notes Computer Science. 2015. vol. 9483. pp. 14–24. DOI: 10.1007/978-3-319-27051-7.
12. Bedi P., Dua A. Network Steganography using the Overflow Field of Timestamp Option in an IPv4 Packet. Procedia Computer Science. 2020. vol. 171. pp. 1810–1818. DOI: 10.1016/j.procs.2020.04.194.
13. Pilania U., Tanwar R., Gupta P. Stable High Capacity Video Steganography in Wavelet Domain. Turkish Journal of Computer and Mathematics Education Research Article. 2021. vol. 12. no. 7. pp. 2142–2158.
14. Pilania U. A Proposed Optimized Steganography Technique using ROI, IWT and SVD. International Journal of Information Systems and Management Science. 2018. pp. 313–318.
15. Zielińska E., Mazurczyk W., Szczypiorski K. Trends in steganography. Communication ACM. 2014. vol. 57. no. 3. pp. 86–95. DOI: 10.1145/2566590.2566610.
16. Zielińska E., Mazurczyk W., Szczypiorski K. Developement Trends in steganography. Communication ACM. 2014. vol. 57. no. 3. pp. 86–95. DOI: 10.1145/2566590.2566610.
17. Amirtharajan R., Rayappan J.B.B. Steganography-time to time: A review. Journal Information Technology. 2013. vol. 5. no. 2. pp. 53–66. DOI: 10.3923/rjit.2013.53.66.
18. Theodore G., Maxwell T., Sandford I.I. Hiding data in the OSI network model. Lecture Notes Computer Science. 1996. vol. 1174. pp. 24–38. DOI: 10.1007/3-540-61996-8_29.
19. Frikha L., Trabelsi Z. A new Covert channel in WIFI networks. Proceeding 2008 3rd International Conference on Risks and Security of Internet and Systems. 2008. pp. 255–260. DOI: 10.1109/CRISIS.2008.4757487.
20. Martins D., Guyennet H. Attacks with Steganography in PHY and MAC Layers of 802.15.4 Protocol. Fifth International Conference on Systems and Networks Communications. 2010. DOI: 10.1109/ICSNC.2010.11.
21. Shah D.C., Rindhe B.U., Narayankhedkar S.K. Effects of cyclic prefix on OFDM system. Proceeding of International Conference and Workshop on Emerging Trends in Technology (ICWET). 2010. pp. 420–424. DOI: 10.1145/1741906.1741996.
22. Grabski S., Szczypiorski K. Steganography in OFDM symbols of fast IEEE 802.11n networks. IEEE Security and Privacy Workshops. 2013. pp. 158–164. DOI: 10.1109/SPW.2013.20.
23. Szczypiorski K., Mazurczyk W. Steganography in IEEE 802.11 OFDM symbols. Security and Communication Networks. 2016. vol. 9. no. 2. pp. 118–129. DOI: 10.1002/sec.306.
24. Khan M.N., Ghauri S. The WiMAX 802.16e Physical Layer Model. IET Conference on Wireless, Mobile and Multimedia Networks. 2008. pp. 117–120. DOI: 10.1049/cp:20080159.
25. Grabska I., Szczypiorski K. Steganography in WiMAX networks. 5th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). 2013. pp. 20–27. DOI: 10.1109/ICUMT.2013.6798399.
26. Hussain I., Negi M.C., Pandey N. Security in ZigBee Using Steganography for IoT Communications. System Performance and Management Analytics. 2019. pp. 217–227.
27. Jankowski B., Mazurczyk W., Szczypiorski K. Information hiding using improper frame padding. Proceedings of 14th Internationl Telecommunication Network Strategy Planning Symposium (Networks). 2010. DOI: 10.1109/NETWKS.2010.5624901.
28. Banoci V., Bugar G., Levicky D. Steganography systems by using CDMA techniques. Proceedings of 19th International Conference Radioelektronika. 2009. pp. 183–186. DOI: 10.1109/RADIOELEK.2009.5158731.
29. Khalife J., Kassas Z.M. Navigation with Cellular CDMA Signals-Part II: Performance Analysis and Experimental Results. IEEE Transaction Signal Processing. 2018. vol. 66. no. 8. pp. 2204–2218. DOI: 10.1109/TSP.2018.2799166.
30. Hasan O., Tahar S. Performance analysis and functional verification of the stop-and-wait protocol in HOL. Journal Automation Reason. 2009. vol. 42. no. 1. pp. 1–33. DOI: 10.1007/s10817-008-9105-6.
31. Shukla V., Chaturvedi A., Srivastava N. A Secure Stop and Wait Communication Protocol for Disturbed Networks. Wireless Communication. 2020. vol. 110. no. 2. pp. 861–872. DOI: 10.1007/s11277-019-06760-w.
32. Kim B., Lee B., Cho J. ASRQ: Automatic segment repeat request for IEEE 802.15.4-based WBAN. IEEE Sensor Journal. 2017. vol. 17. no. 9. pp. 2925–2935. DOI: 10.1109/JSEN.2017.2676163.
33. Martins D., Guyennet H. Steganography in MAC Layers of 802.15.4 Protocol for Securing Wireless Sensor Networks. International Conference on Multimedia Information Networking and Security. 2010. pp. 824–828. DOI: 10.1109/MINES.2010.175.
34. Xue P.F., Hu J.S., Liu H.L., Hu R.G. A new network steganographic method based on the transverse multi-protocol collaboration. Journal Information Hiding Multimedia Signal Processing. 2017. vol. 8. no. 2. pp. 445–459.
35. Maya A. Steganology and information hiding: Stegop2py: embedding data in TCP and IP headers. Centria University of Applied Science. 2021. 59 p.
36. Maulana B., Rahim R. Go-Back-N Arq Approach for Identification and Repairing Frame in Transmission Data. International Journal Resource Science Engineering. 2016. vol. 2. no. 6. pp. 208–212.
37. Bedi P., Dua A. ARPNetSteg: Network steganography using address resolution protocol. International Journal Electronic Telecommunication. 2020. vol. 66. no. 4. pp. 671–677. DOI: 10.24425-ijet.2020.134026/769.
38. Schmidbauer T., Wendzel S., Mileva A., Mazurczyk W. Introducing Dead Drops to Network Steganography using ARP-Caches and SNMP-Walks. Proceedings of the 14th International Conference on Availability, Reliability and Security. 2019. pp. 1–10. DOI: 10.1145/3339252.3341488.
39. Llamas D., Miller A., Allison C. Covert channels in internet protocols: A survey. Proceedings of the 6th Annual Postgraduate Symposium about the Convergence of Telecommunications, Networking and Broadcasting, PGNET. 2005. vol. 2005.
40. Bobade S., Goudar R. Secure data communication using protocol steganography in IPv6. Proceedings of the 1st International Conference on Computing Communication Control and Automation (ICCUBEA). 2015. pp. 275–279. DOI: 10.1109/ICCUBEA.2015.59.
41. Miller P. Applying Steganography to Standard Network Traffic. Proceedings of the 4th Winona Computer Science Undergraduate Research Symposium. 2004. pp. 3–6.
42. Xue P.F., Hu J.S., Hu R.-G., Liu H.-L., Gu Y. A new DHT: Network steganography based on distributed coding. Journal of Information Hiding and Multimedia Signal Processing. 2018. vol. 9. no. 2. pp. 355–369.
43. Mazurczyk W., Smolarczyk M., Szczypiorski K. On information hiding in retransmissions. Telecommunication System. 2013. vol. 52. no. 2. pp. 1113–1121. DOI: 10.1007/s11235-011-9617-y.
44. Mazurczyk W., Smolarczyk M., Szczypiorski K. Retransmission steganography applied. Proceedings of 2nd International Conference on Multimedia Information Networking and Security. 2010. pp. 846–850. DOI: 10.1109/MINES.2010.179.
45. Siddiqui F., Zeadally S. Stream control transmission protocol (SCTP). Encyclopedia Internet Technology Application. 2007. pp. 575–582. DOI: 10.4018/978-1-59140-993-9.ch081.
46. Mazurczyk W., Szczypiorski K. Steganography of VoIP streams, Lecture Notes Computer Science. 2008. vol. 5332. LNCS, no. PART 2, pp. 1001–1018. DOI: 10.1007/978-3-540-88873-4_6.
47. Lubacz J., Mazurczyk W., Szczypiorski K. Principles and overview of network steganography. IEEE Communications Magazine. 2014. vol. 52(5). pp. 225–229.
48. Hamdaqa M., Tahvildari L. ReLACK: A reliable VoIP steganography approach. Proceedings of 5th International Conference Security Software Integration Reliability Improvement. 2011. pp. 189–197. DOI: 10.1109/SSIRI.2011.24.
49. Na S., Yoo S. Allowable Propagation Delay for VoIP Calls. International Workshop on Advanced Internet Services and Applications. 2002. pp. 47–55.
50. Bak P., Bieniasz J., Krzeminski M., Szczypiorski K. Application of perfectly undetectable network steganography method for malware hidden communication. 4th International Conference Frontier Signal Processing (ICFSP). 2018. pp. 34–38. DOI: 10.1109/ICFSP.2018.8552057.
51. Mills D.L. A brief history of NTP time: Memoirs of an Internet timekeeper. Computer Communication Reverse. 2003. vol. 33. no. 2. pp. 9–21. DOI: 10.1145/956981.956983.
52. Schmidbauer T., Wendzel S. Covert storage caches using the NTP protocol. Proceedings of the 15th International Conference on Availability, Reliability and Security. 2020. DOI: 10.1145/3407023.3409207.
53. Wang M., Gu W., Ma C. A Multimode Network Steganography for Covert Wireless Communication Based on BitTorrent. Security Communication Networks. 2020. vol. 2020. DOI: 10.1155/2020/8848315.
54. K Shah M., Virparia A.M., Sharma K. An Overview of Advanced Network Steganography. International Journal Computer Application. 2015. vol. 118. no. 21. pp. 23–26. DOI: 10.5120/20871-3364.
55. Dimitrova B., Mileva A. Steganography of Hypertext Transfer Protocol Version 2 (HTTP/2). Journal of Computer Communication. 2017. vol. 05. no. 05. pp. 98–111. DOI: 10.4236/jcc.2017.55008.
56. Collins J., Agaian S. Trends Toward Real-Time Network Data Steganography. International Journal Network Security and Its Applications. 2016. vol. 8. no. 2. pp. 01–21. DOI: 10.5121/ijnsa.2016.8201.
57. Drzymała M., Szczypiorski K., Urbański M.Ł. Network Steganography in the DNS Protocol. International Journal of Electronic and Telecommunications. 2016. vol. 62. no. 4. pp. 343–346. DOI: 10.1515/eletel-2016-0047.
58. Nazari M., Tarahomi S., Aliabady S. A Lightweight Adaptable DNS Channel for Covert Data Transmission. arXiv preprint arXiv:2003.14094. 2020.
59. Bormann C., Castellani A.P., Shelby Z. CoAP: An application protocol for billions of tiny internet nodes. IEEE Internet Computing. 2012. vol. 16. no. 2. pp. 62–67. DOI: 10.1109/MIC.2012.29.
60. Mileva A., Velinov A., Stojanov D. New Covert Channels in Internet of Things. 12th International Conference on Emerging Security Information, Systems and Technologies. 2018. pp. 30–36.
61. Patuck R., Hernandez-Castro J. Steganography using the Extensible Messaging and Presence Protocol (XMPP). arXiv:1310.0524. 2013. DOI: 10.48550/arXiv.1310.0524.
62. Ciobanu R.I., Tirsa M.O., Lupu R., Stan S., Andreica M.I. SCONeP: Steganography and Cryptography approach for UDP and ICMP. Proceedings of RoEduNet IEEE International Conference. 2011. pp. 1–6. DOI: 10.1109/RoEduNet.2011.5993700.
63. Alishavandi A.M., Fakhredanesh M. MKIPS: MKI-based protocol steganography method in SRTP. ETRI Journal. 2021. vol. 43. no. 3. pp. 561–570. DOI: 10.4218/etrij.2018-0410.
64. Castiglione A., De Santis A., Fiore U., Palmieri F. E-mail-based covert channels for asynchronous message steganography. Proceedings of 5th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computer. 2011. pp. 503–508. DOI: 10.1109/IMIS.2011.133.
65. Lucena N.B., Pease J., Yadollahpour P., Chapin S.J. Syntax and Semantics-Preserving Application-Layer Protocol Steganography. Information Hiding: 6th International Workshop. 2004. pp. 164–179. DOI: 10.1007/978-3-540-30114-1_12.
66. Ali A.H., Mokhtar M.R., George L.E. Recent approaches for VoIP steganography. Indian Journal Science Technology. 2016. vol. 9. no. 38. DOI: 10.17485/ijst/2016/v9i38/101283.
67. Mazurczyk W. VoIP steganography and its detection – a survey. ACM Computer Surve s. 2013. vol. 46. no. 2. DOI: 10.1145/2543581.2543587.
68. Wang C., Wu Q. Information hiding in real-time VoIP streams. Proceedings of the 9th IEEE International Symposium Multimedia (2007). 2007. pp. 255–262. DOI: 10.1109/ISM.2007.33.
69. Xu T., Yang Z. Simple and effective speech steganography in G.723.1 low-rate codes. 2009 International Conference on Wireless Communication and Signal Processing. 2009. pp. 1–5. DOI: 10.1109/WCSP.2009.5371745.
70. Ito A., Suzuki Y. Information hiding for G.711 speech based on substitution of least significant bits and estimation of tolerable distortion. IEICE Transaction Fundamentals of Electronics, Communications and Computer Science. 2010. vol. 93. no. 7. pp. 1279–1286. DOI: 10.1587/transfun.E93.A.1279.
71. Tian H., Zhou K., Jiang H., Huang Y., Liu J., Feng D. An adaptive steganography scheme for voice over IP. Proceedings of the IEEE International Symposium on Circuits Systems. 2009. pp. 2922–2925. DOI: 10.1109/ISCAS.2009.5118414.
72. Miao R., Huang Y. An approach of covert communication based on the adaptive steganography scheme on voice over IP. IEEE International Conference on Communications (ICC). 2011. DOI: 10.1109/icc.2011.5962657.
73. Tian H., Zhou K., Huang Y., Feng D., Liu J. A covert communication model based on least significant bits steganography in voice over IP. Proceeding of the 9th International Conference for Young Computer Scientists. 2008. pp. 647–652. DOI: 10.1109/ICYCS.2008.394.
74. Janicki A., Mazurczyk W., Szczypiorski K. Steganalysis of transcoding steganography. annals of telecommunications-annales des télécommunications. 2014. vol. 69. pp. 449–460.
75. Goher S., Javed B., Saqib N. Covert channel detection: A survey-based analysis. High-Capacity Optical Networks and Emerging/Enabling Technologies. 2012. pp. 057–065.
76. Wu Z., Guo J., Zhang C., Li C. Steganography and steganalysis in voice over ip: A review. Sensors. 2021. vol. 21. no. 4.
77. Neubert T., Caballero Morcillo A.J., Vielhauer C. Improving Performance of Machine Learning based Detection of Network Steganography in Industrial Control Systems. Proceedings of the 17th International Conference on Availability, Reliability and Security. 2022. pp. 1–8.
78. Zhang X.-G., Yang G.-H., Ren X.-X. Network steganography based security framework for cyber-physical systems. Information Sciences. 2022. vol. 609. pp. 963–983.
79. Tymchenko O., Havrysh B. Steganography in TCP/IP Networks. International Conference of Artificial Intelligence, Medical Engineering, Education. 2023. pp. 47–56.
80. Chai H., Li Z., Li F., Zhang Z. An end-to-end video steganography network based on a coding unit mask. Electronics. 2022. vol. 11. no. 7. pp. 1142.
81. Olawoyin L.A., Abdul-Rahman M., Faruk N., Oloyede A., Adeniran C., Lasisi O., Sikiru I., Baba B.A. Hybridization of OFDM and Physical Layer Techniques for Information Security in Wireless System. SLU Journal of Science and Technology. 2023. vol. 6. no. 1, 2. pp. 21–29.
82. Rajesh S., Joshi A. Estimation of Transmission Bandwidth for VoIP Signals over IP Packet Transmission Network using Capacity Computing Method. IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS). 2023. pp. 01–07. DOI: 10.1109/ICICACS57338.2023.10100177.
83. Pilania U., Tanwar R., Zamani M., Manaf A.A. Framework for video steganography using integer wavelet transform and JPEG compression. Future Internet. 2022. vol. 14(9). pp. 1–16. DOI: 10.3390/fi14090254.
84. Pilania U., Kumar M., Kaur G. Region of Interest Using Viola-Jones Algorithm for Video Steganography. Applied Computational Technologies: Proceedings of ICCET 2022. 2022. pp. 405–415. DOI: 10.1007/978-981-19-2719-5_38.
Опубликован
Как цитировать
Раздел
Copyright (c) Урмила Пилания, Маной Кумар, Танвар Рохит, Неха Нандал
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).