Полиномиальные аппроксимации некоторых функций активации нейронных сетей
Ключевые слова:
функция активации, ReLU, гиперболический тангенс, логистический сигмоид, гомоморфное шифрование, BGV, CKKS, нейронная сеть, полиномиальная аппроксимация, конфиденциальное машинное обучениеАннотация
Активное внедрение систем машинного обучения ставит актуальную задачу обеспечения их защиты от различных типов атак, направленных на нарушение свойств конфиденциальности, целостности и доступности как обрабатываемых данных, так и обучаемых моделей. Одним из перспективных направлений защиты является разработка конфиденциальных систем машинного обучения, использующих гомоморфные схемы шифрования для защиты моделей и данных. Однако такие схемы могут обрабатывать только полиномиальные функции, что в свою очередь ставит задачу построения полиномиальных аппроксимаций используемых в нейросетевых моделях нелинейных функций. Целью настоящей работы является построение наиболее точных аппроксимаций некоторых широко используемых функций активаций нейронных сетей, а именно ReLU, логистического сигмоида и гиперблолического тангенса, при ограничениях на степень аппроксимирующего полинома, а также оценка влияния точности такой аппроксимации на результат работы нейронной сети в целом. В отличие от опубликованных ранее работ рассматриваются и сравниваются различные способы построения аппроксимирующих полиномов, вводятся метрики точности приближения, приводится конкретный вид аппроксимирующих полиномов, а также соответствующие значения точности приближения. Проводится сравнение с аппроксимациями, приведенными в опубликованных ранее работах. В заключение для простейшей нейронной сети экспериментально оценено влияние точности приближения аппроксимирующего полинома на величину отклонения значений выходных нейронов такой сети от соответствующих значений выходных нейронов исходной сети. Результаты показывают, что для функции ReLU наилучшее приближение может быть получено с помощью численного метода, а для логистического сигмоида и гиперболического тангенса – с помощью полиномов Чебышева. При этом наилучшее приближение из трех рассмотренных функций получено для функции ReLU. Полученные результаты в дальнейшем могут быть использованы при построении аппроксимаций функций активации в конфиденциальных системах машинного обучения.
Литература
2. Dowlin N., Gilad-Bachrach R., Laine K., Lauter K., Naehrig M., Wernsing J. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy // Proceedings of the 33rd International Conference on Machine Learning (ICML). 2016. pp. 201 – 210.
3. Hesamifard, E., Takabi, H., Ghasemi, M. CryptoDL: Deep neural networks over encrypted data // arXiv preprint:1711.05189. 2017.
4. Juvekar C., Vaikuntanathan V., and Chandrakasan A. GAZELLE: A low latency framework for secure neural network inference // 27th USENIX Security Symposium. USENIX Association. 2018. pp. 1651—1669.
5. Brakerski Z., Gentry C., Vaikuntanathan V. (Leveled) Fully Homomorphic Encryption Without Bootstrapping // ACM Trans. Comput. Theory. vol. 6. 2014. pp. 13:1–13:36.
6. Cheon J.H., Kim A., Kim M., Song Y. Homomorphic encryption for arithmetic of approximate numbers // Proceedings of the International Conference on the Theory and Applications of Cryptology and Information Security. 2017. pp. 409 – 437.
7. Crawford L. H., Gentry C., Halevi S., Platt D., and Shoup V. Doing realwork with FHE: The case of logistic regression // 6th Workshop Encrypted Comput. Appl. Homomorphic Cryptogr. (WAHC), New York, USA. 2018. pp. 1–12.
8. Ghodsi Z., Gu T., Garg S. Safetynets: Verifiable execution of deep neural networks on an untrusted cloud // Advances in Neural Information Processing Systems. 2017. pp. 4672—4681.
9. Ramy E.A., Jinhyun S., Salman Avestimehr. On Polynomial Approximations for Privacy-Preserving and Verifiable ReLU Networks // arXiv preprint:2011.05530, 2020.
10. Репозиторий проекта CryptoDL URL: https://github.com/inspire-lab/CryptoDL (дата обращения: 01.09.2021).
11. Lee J., Lee E., Lee J.-W., Kim Y., Kim Y.-S., No J.-S. Precise Approximation of Convolutional Neural Networks for Homomorphically Encrypted Data // arXiv preprint:2105.10879, 2021.
12. Krogh F.T. Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation, Math. Comput. 1970. vol. 24. no. 109. pp. 185 – 190.
13. Молчанов И.Н. Машинные методы решения прикладных задач. Алгебра, приближение функций. Киев: Наук. думка, 1987. С. 288.
14. Taylor J.R. An introduction to error analysis, University Science Books Mill Valley, California, 1982. P. 344.
15. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition // Proceedings of the IEEE. 1998. vol. 86, no. 11. pp. 2278–2324.
Опубликован
Как цитировать
Раздел
Copyright (c) Григорий Борисович Маршалко, Юлия Анатольевна Труфанова
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями: Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу (Смотри The Effect of Open Access).