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Кузнецов Н.А., Семенихин К.В. Метод нелинейной фильтрации при неизвестной
интенсивности шума в наблюдениях.

Аннотация. В работе изложен метод обратной статистической линеаризации –
метод нелинейной фильтрации для оценивания состояний линейно-гауссовских
дифференциальных систем с неизвестной интенсивностью шума в наблюдениях.
Предложенный метод основан на нелинейном преобразовании разностной ошибки
с сохранением коэффициента передачи, используемого в фильтре Калмана-Бьюси.
В результате нелинейный фильтр описывается системой дифференциальных уравнений
того же порядка, что и вектор состояния без использования уравнений на ковариационную
матрицу ошибки. Уравнения нелинейного фильтра найдены в аналитическом виде для
модели одномерного движения, в которой только на старшую производную действует
возмущение в виде белого шума, а наблюдению доступно лишь положение с белошумной
аддитивной помехой неизвестной интенсивности. Проведен анализ соответствующей
разностной схемы нелинейной фильтрации: обоснована несмещенность оценок и получено
уравнение на ковариационную матрицу ее ошибок в стационарном режиме. Теоретические
результаты подтверждены численным экспериментом, в котором сравнивалась точность
оценок оптимального и нелинейного фильтров.

Ключевые слова: нелинейная фильтрация, неизвестная интенсивность шума, линейная
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1. Введение. Методы нелинейной фильтрации востребованы
в современных исследованиях, нацеленных на решение разнообразных
задач оценивания параметров и процессов частично наблюдаемых
стохастических систем: оптимальная фильтрация в скрытой
марковской модели при наличии шума, зависящего от оцениваемого
состояния [1]; расширение метода нормальной аппроксимации на неявные
стохастические дифференциальные системы [2]; адаптация калмановской
фильтрации для идентификации отказов на основе метода наименьших
модулей [3]; разработка устойчивых алгоритмов расширенной
калмановской фильтрации без использования производных [4];
модификация расширенного фильтра Калмана для обработки
навигационных наблюдений [5]; развитие метода информационных
множеств для гарантированного оценивания фазовых координат
многошаговых систем [6]; обоснование робастности нелинейных
методов фильтрации с привлечением вероятностных и информационных
метрик [7]; методика сравнительного анализа алгоритмов нелинейной
фильтрации [8].
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За последние два десятилетия наметился тренд на разработку
методов обработки измерительной информации в сетевых или
распределенных системах, в которых объект представляет собой группу
взаимодействующих агентов, а датчики образуют сеть с определенным
протоколом обмена информации [9–12]. Практическая реализация таких
алгоритмов наталкивается на теоретически обоснованный барьер скорости
передачи информации между различными узлами распределенной
измерительной системы [13], что приводит к необходимости разработки
алгоритмов оценивания и фильтрации с учетом ограниченности или
случайности коммуникационного взаимодействия [14–16].

Последнее делает актуальным задачу разработки упрощенных
алгоритмов фильтрации, рассчитанных на передачу ограниченного
объема информации за один такт обработки. Для многомерных моделей
серьезной вычислительной проблемой является численное обновление
ковариационной матрицы ошибки оценивания в рекуррентных алгоритмах
фильтрации. Эта проблема еще более усугубляется в ситуации, когда
у шумов в наблюдениях неизвестна ковариационная матрица (в случае
дискретного времени) или интенсивность (в случае непрерывного
времени).

Для учета неточности задания характеристик случайных
шумов используют робастный подход, в русле которого лежат
методы минимаксной фильтрации: они ориентированные на
применение оптимального линейного фильтра при наихудшем
выборе неопределенной интенсивности шума [17,18], его ковариационной
матрицы [19,20] или распределения внутри вероятностного множества
неопределенности [21, 22].

При использовании адаптивного подхода синтезируется
совместная схема фильтрации ненаблюдаемого состояния стохастической
системы и оценивания ее неизвестных параметров: в [23] применены
градиентный метод и приближенный метод Ньютона для адаптивной
подстройки матриц ковариаций возмущений в объекте и шумов
измерения; в [24,25] реализованы схемы фильтра частиц с включением
байесовских оценок неизвестных дисперсий (или ковариационных матриц)
на основе априорных моделей обратного гамма-распределения (или
обратного распределения Уишарта); в [26] использован EM-алгоритм
для синтеза адаптивного фильтра Калмана в линейно-гауссовской
системе с неизвестными ковариациями шумов; в [27] разработана
методика адаптивной сигма-точечной фильтрации для отслеживания
навигационных параметров GPS-сигналов по измерениям с неизвестной
интенсивностью шума.
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Тем не менее, указанные два подхода (робастный и адаптивный)
обладают своими недостатками. С одной стороны, робастные методы
оценивания зачастую порождают достаточно консервативные решения.
С другой стороны, адаптивные методы в случае многопараметрической
неопределенности приводят к сложным и подчас неустойчивым
численным схемам. Для изучаемой в настоящей статье задачи
фильтрации состояния линейно-гауссовской дифференциальной
системы с неизвестной интенсивностью шума в наблюдениях можно
предложить альтернативный подход. Он основан на нелинейном
преобразовании разностной ошибки с сохранением коэффициента
передачи, используемого в фильтре Калмана-Бьюси. Тем самым
оптимальный линейный фильтр с неопределенными коэффициентами
заменяется нелинейным фильтром с теми же мгновенными моментными
характеристиками без использования дополнительной схемы оценивания
неизвестной интенсивности. Поэтому этот метод можно назвать методом
обратной статистической линеаризации.

Его идея была впервые предложена более 50 лет тому назад [28]
и развита нашим коллегой Ф.Н. Григорьевым в его кандидатской
диссертации [29]. Более того, данный метод нелинейной фильтрации
был использован для построения оценок параметров движения
крупнотоннажных транспортных судов и разработки информационной
системы предупреждения их столкновений в условиях, когда величины
измерительных ошибок неизвестны [30]. Соответствующие алгоритмы
были внедрены в автоматизированную систему управления судовождением
на морском флоте (Государственная премия СССР в области науки и
техники за 1985 год). К сожалению, в научной литературе данный метод
нелинейной стохастической фильтрации до сих пор не получил должного
отражения. Поэтому целью настоящей статьи является его аккуратное
изложение и анализ свойств соответствующих оценок.

Статья имеет следующую структуру. В разделе 2 приведены
описание рассматриваемого класса систем и постановка задачи.
В разделе 3 предъявлено аналитическое решение для модели частного
вида, а также приведены соображения, позволяющие распространить
данный метод на более общий случай. Раздел 4 содержит синтез
разностной схемы реализации искомого нелинейного фильтра,
обоснование несмещенности оценок и вывод рекуррентного уравнения
для ковариационной матрицы ошибки. В разделе 5 представлены
результаты численного эксперимента для сравнения точности оценок
постренного нелинейного фильтра с эталонным качеством оценивания

1546

____________________________________________________________________МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРИКЛАДНАЯ МАТЕМАТИКА

Информатика и автоматизация. 2025. Том 24 № 6. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru



оптимального фильтра при разном уровне помех. Раздел 6 представляет
собой заключение статьи с кратким описанием полученных результатов.

2. Постановка задачи. Предположим, что состояние объекта
X(t) ∈ Rm и вектор наблюдений Y (t) ∈ Rn описываются линейной
стохастической дифференциальной системой

Ẋ = AX + u(t) +B υ(t), Ẏ = CX +
√
Σ ε(t), (1)

c заданными постоянными матрицамиA ∈ Rm×m,B ∈ Rm×q ,C ∈ Rn×m,
входом u(t) = U(t, {Y (s): s < t}), определяемым известным законом
управленияU(·), и неизвестнойматрицей интенсивностиΣ ∈ Rn×n

+ (Rn×n
+

обозначает конус неотрицательно определенных матриц размера n× n),
где υ(t) ∈ Rq, ε(t) ∈ Rn – независимые стандартные гауссовские белые
шумы.

Допустим, что матрица интенсивности шума в наблюдениях
положительно определена: Σ ≻ O, пара (A,C) удовлетворяет условию
наблюдаемости

ker


C
CA
. . .

CAm−1

 = {0}, (2)

а пара (A,B) – условию управляемости

im
[
B AB . . . Am−1B

]
= Rm, (3)

(ker и im обозначают ядро и образ соответствующего линейного
преобразования).

При этих условиях определен стационарный фильтр Калмана-
Бьюси [31], т.е. оценка X̂(t) = M{X(t) |Y (s): s < t} описывается
линейным стохастическим дифференциальным уравнением

˙̂
X = AX̂ + u(t) +K [Ẏ − CX̂], (4)
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с постоянным коэффициентом усиления

K = QCTΣ−1 ∈ Rm×n (5)

и постоянной ковариационной матрицей ошибки фильтрации

Q = cov{X̂(t)−X(t)} ∈ Rm×m
+ , (6)

удовлетворяющей алгебраическому уравнению Риккати

AQ+QAT +BBT −QCTΣ−1CQ = O, (7)

решение которого в классе положительно определенных матриц
существует и единственно [32].

Кроме того, разностная ошибка δ(t) = Ẏ (t)− CX̂(t) представляет
собой гауссовский белый шум с матрицей интенсивности Σ. Тогда
преобразованная разностная ошибкаKδ(t) тоже будет гауссовским белым
шумом с матрицей интенсивности

S = KΣKT = QCTΣ−1CQ. (8)

Ясно, что каждая из трех матриц (5), (6) и (8) является функцией
неизвестной матрицы Σ, поэтому далее (если это потребуется) будем
использовать запись:K = K(Σ), Q = Q(Σ), S = S(Σ) и т.д.

Предлагается заменить линейный фильтр (4), содержащий
неопределенный коэффициентK, нелинейным фильтром

˙̆
X = AX̆ + u(t) + φ(Ẏ − CX̆), (9)

в котором нелинейное преобразование φ : Rn → Rm выбирается из
условия соответствия моментных характеристик преобразованной
разностной ошибки в фильтре Калмана-Бьюси. Последнее означает, что
при любом выборе матрицы Σ ≻ O будет верно
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M{φ(ξ)} = 0, cov{φ(ξ)} = cov{Kξ}, ξ ∼ N (0,Σ), (10)

гдеK = K(Σ) определяется из (5), (6). Тем самым искомое нелинейное
преобразование φ(ξ) центрированного гауссовского вектора ξ
с положительно определенной ковариационной матрицей Σ должно
иметь те же математическое ожидание и ковариацию, что и линейное
преобразование K(Σ)ξ с коэффициентом из стационарного фильтра
Калмана-Бьюси.

Если совпадение ковариационных матриц в (10) является
невозможным, то будем накладывать менее строгое ограничение –
совпадение дисперсий для каждой компоненты φi(ξ) искомого
преобразования

D{φi(ξ)} = (KΣKT )i,i при i = 1, . . . ,m, ξ ∼ N (0,Σ). (11)

Требуется: предъявить класс систем вида (1), для которых можно
реализовать предложенный метод обратной статистической линеаризации,
дать корректное определение нелинейной стохастической системе (9) и
изучить качество соответствующих оценок X̆(t) в сравнении с тем, что
дает оптимальный фильтр X̂(t), рассчитанный при истинной матрице
интенсивности шума Σ.

3. Описание метода фильтрации. Начнем с важного частного
случая, в котором искомый нелинейным фильтр допускает аналитическое
описание [28, 29].

Рассмотрим модель, в которой вектор состояния X(t) ∈ Rm

составлен из значений скалярного процесса κ(t) и его производных
κ(i)(t), i = 1, . . . ,m− 1, т.е.

X = col[X1, . . . , Xm] = col[κ, κ̇, κ̈, . . . ,κ(m−1)], (12)

(col[. . . ] обозначает столбец), возмущение присутствует явно только
в уравнении старшей производной κ(m−1)(t), а измерению доступен
процесс κ(t) c аддитивной помехой:
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Ẋ1 = X2, . . . , Ẋm−1 = Xm, Ẋm = βυ(t), Ẏ = X1 + σε(t), (13)

где β, σ – положительные коэффициенты, из которых β задано, а
интенсивность шума σ неизвестна. Возмущение υ(t) и помеха ε(t)
предполагаются независимыми стандартными гауссовскими белыми
шумами.

Ясно, что (13) – частный случай модели (1) с матрицами

A =


0 1...

. . .
0 1
0 0 . . . 0

 , B = βE, E =


0
...
0
1

 , (14)

C =
[
1 0 . . . 0

]
, Σ = σ2. (15)

В этом случае известно [33], что уравнение относительно
ковариационной матрицы ошибки стационарного фильтра Калмана (7)
имеет аналитическое решение:

Q = {Qi,j}i,j=1,...,m : Qi,j = Gi,j σ
2
(
β/σ

)(i+j−1)/m
, (16)

где коэффициенты {Gi,j} не зависят от параметров системы (13) и
образуют симметричную матрицу G ∈ Rm×m, которая представляет
собой единственное положительно определенное решение уравнения
Риккати

AG+GAT + EET −GCTCG = O. (17)

Данное уравнение полностью аналогично (7) применительно
к системе (13) с параметрамиβ = σ = 1. Существование и единственность
решения G ≻ O вытекает из условий наблюдаемости и управляемости,
выполненных для пар (A,C) и (A,E) соответственно.

Таким образом, коэффициент усиления (5) принимает вид
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K = QCT(σ2)−1 = col[K1, . . . ,Km], Ki = Gi,1

(
β/σ

)i/m
. (18)

Тогда соответствующий оптимальный фильтр (4) допускает запись

˙̂
Xi = X̂i+1 +Gi,1

(
β/σ

)i/m
δ(t), i = 1, . . . ,m− 1, (19)

˙̂
Xm = Gm,1

(
β/σ

)
δ(t), (20)

где δ(t) = Ẏ (t)− X̂1(t) – разностная ошибка, образующая гауссовский
белый шум интенсивности σ2, а коэффициент усиления при нем является
(с точностью до множителя) степенной функцией

k(σ) = σ−α, где 0 < α ⩽ 1. (21)

Тогда согласно методу обратной статистической линеаризации
необходимо заменить линейное преобразование η = k(σ)ξ гауссовской
случайной величины ξ ∼ N (0, σ2) c неизвестной дисперсией σ2 ее
нелинейным преобразованием ϕ(x) с сохранением первых двух моментов,
т.е.:

Mσϕ(ξ) = 0, Dσϕ(ξ) =
(
k(σ)σ

)2 ∀σ > 0. (22)

Для устойчивости замкнутой системы и сохранения симметрии
искомую функцию ϕ(x) следует выбрать монотонной, нечетной и не более
чем линейного роста. Если взять степенную функцию, то в случае (21)
получаем

ϕ(x) = γ−1/2
p sign(x)|x|1−α, (23)

где γp обозначает абсолютный момент порядка p = 2(1− α) стандартной
нормальной величины ν ∼ N (0, 1), т.е.:
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γp = M |ν|p =
2p/2√
π

Γ
(
p + 1

2

)
.

Действительно, первое из условий (22) имеет место в силу
нечетности функции ϕ(x), а второе следует из цепочки равенств

Mσ(ϕ(ξ))
2 = γ−1

p Mσ|ξ|p = γ−1
p M(σ|ν|)p = σp =

(
k(σ)σ

)2
. (24)

Теперь в соответствии с (9) получаем уравнения нелинейного
фильтра

˙̆
Xi = X̆i+1 +Gi,1γ

−1/2
2(1−i/m) β

i/msign(δ(t))|δ(t)|1−i/m (25)

при i = 1, . . . ,m− 1,

˙̆
Xm = Gm,1β sign(δ(t)) (26)

с учетом разностной ошибки δ(t) = Ẏ (t)− X̆1(t).
Структурная схема построенного нелинейного фильтра приведена

на рисунке 1.

Рис. 1. Структурная схема нелинейного фильтра (25), (26)

Отметим, что построенное нелинейное преобразование
φ : R → Rm подчиняется более слабому требованию (11). Нетрудно
проверить, что отличие между двумя ковариационными матрицами
в исходном условии (10) определяется коэффициентами

,
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γ(pi+pj)/2√
γpi
γpj

для i, j = 1, . . . ,m и pi = 2(1− i/m). (27)

Теперь рассмотрим более общую ситуацию, в которой по-прежнему
наблюдения скалярны (т.е. n = 1) и имеют неизвестную интенсивность
шума σ2, но матрицы A,B,C теперь будут произвольными – лишь бы
были выполнены условия наблюдаемости (2) и управляемости (3).

Коэффициент усиления (5) представляет собой вектор-столбец
с компонентами Ki(σ

2), i = 1, . . . ,m, зависящими от неизвестной
интенсивности σ2. Предположим, что эта зависимость определена
численно или аналитически. Тогда для назначения функции φ : R → Rm,
соответствующей условию (11), предположим, что ее компоненты φi(x)
выбраны нечетными функциями, такими что

Dσφi(ξ) =
1√
2πσ2

∫ ∞

−∞
φ2
i (x) e

−x2/(2σ2) dx = σ2K2
i (σ

2). (28)

После замены переменной y = x2/2 и θ = 1/σ2 получаем, что
искомая функция определяется в результате обратного преобразования
Лапласа

∫ ∞

0

ψi(y)e
−θy dy =

K2
i (1/θ)

θ3/2

√
π/2,   φi(x) =

√
xψi(x2/2),    x ⩾ 0. (29)

В случае векторных наблюдений предлагается привести их к одному
масштабу, воспользоваться оценкой сверху на неизвестную матрицу
интенсивности шума в виде Σ ⪯ σ2I , задать нелинейное преобразование
φ(x) через функции одной переменной φi(xi) и искать последние из
того же условия (28), но с тем уточнением, что K2

i обозначает сумму
квадратов i-й строки матричного коэффициента усиления (5), в котором
надо положить Σ = σ2I .

Таким образом, описан общий метод построения нелинейного
преобразования φ(·) в искомом фильтре (9). Однако остается вопрос
численной реализации соответствующего фильтра вместе с проблемой
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применимости нелинейного звена к случайному процессу типа белого
шума.

Синтез соответствующей численной схемы и обоснование ее
устойчивости проведены в следующем разделе.

4. Численная схема. Рассмотрим численную реализацию методов
фильтрации на основе метода Эйлера [34]. Для линейного фильтра (4)
соответствующая численная схема имеет вид

X̂(tk+1) = X̂(tk) + h
(
AX̂(tk) + u(tk)

)
+

+K
[
Y (tk+1)− Y (tk)− hCX̂(tk)

]
, (30)

где {tk+1 = tk+h, k = 0, 1, 2, . . . } – временная сетка с достаточно малым
шагом h > 0.

Важно отметить, что выражение в квадратных скобках представляет
собой аппроксимацию интеграла

∫ tk+1

tk

δ(t) dt = Y (tk+1)− Y (tk)− C

∫ tk+1

tk

X̂(t) dt (31)

от разностной ошибки δ(t) = Ẏ (t)− CX̂(t), которая образует
гауссовский белый шум интенсивности Σ. Тогда по свойству
стохастического интеграла вектор (31) является гауссовским,
имеет нулевое математическое ожидание, а его ковариационная
матрица равна hΣ. После умножения (31) на коэффициент 1/

√
h

получаем случайный вектор ξ ∼ N (0,Σ), к которому можно применить
нелинейное преобразование, сохраняющее математическое ожидание и
ковариационную матрицу (10).

Поэтому искомая численная схема реализации нелинейного
фильтра (9) принимает вид

X̆(tk+1) = X̆(tk) + h
(
AX̆(tk) + u(tk)

)
+

+
√
hφ

(
Y (tk+1)− Y (tk)√

h
−
√
hCX̆(tk)

)
. (32)
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Если для состояния и наблюдаемого процесса воспользоваться
аппроксимацией, основанной на методе Эйлера

X(tk+1) = X(tk) + h
(
AX(tk) + u(tk)

)
+B

∫ tk+1

tk

υ(t) dt, (33)

Y (tk+1) = Y (tk) + hCX(tk) +
√
Σ

∫ tk+1

tk

ε(t) dt, (34)

то для ошибки оценки нелинейного фильтра e(tk) = X̆(tk)−X(tk)
получается следующее рекуррентное уравнение:

e(tk+1) = [I + hA]e(tk)+
√
h
{
−Bυk+1 +φ

(
−
√
h Ce(tk)+

√
Σ εk+1

)}
, (35)

где случайные векторы υ1, υ2, . . . ∈ Rq и ε1, ε2, . . . ∈ Rn, взаимно
независимы и подчиняются стандартному нормальному распределению
N (0, I).

Если функция φ(x) является нечетной, т.е.

φ(−x) = −φ(x) ∀x ∈ Rn, (36)

и начальная ошибка фильтрации e(t0) имеет симметричное относительно
нуля распределение, то тем же свойством будет обладать и распределение
ошибки фильтрации e(tk) на всех последующих шагах. Поэтому оценка
определяемая рекуррентными уравнениями (32) в дискретизованной
модели (33), (34) является несмещенной:

M{X̆(tk)−X(tk)} = 0. (37)

Для анализа точности нелинейного фильтра рассмотрим
ковариационную матрицу ошибки оценивания ∆(tk) = cov{e(tk)},
которая в силу (37) может быть определена как∆(tk) = M{e(tk)eT(tk)},
а также условную матрицу вторых моментов ошибки ∆(tk|x) =
M{e(tk)eT(tk) | e(tk−1) = x}. Указанные матрицы связаны равенством
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∆(tk) = M
{
∆
(
tk|e(tk−1)

)}
. (38)

Тогда из (35) следует

∆(tk+1|x) = hBBT + M
{(

[I + hA]x +
√
h φ(−

√
h Cx + ξ)

)(
⋆
)T }

, (39)

где ξ ∼ N (0,Σ), а символ⋆ означает дублирование выражения, стоящего
слева в круглых скобках.

Дальнейшие вычисления проведем в предположении h ↓ 0.
Заметим, что при y → 0

Mφ(y + ξ) = LΣ−1y + o(y), L = L(Σ) = M{φ(ξ)ξT } ∈ Rm×n. (40)

Это следует из равенстваMφ(ξ) = 0, представления

Mφ(y + ξ) =

∫
Rn

φ(z)g(z − y) dz, g(v) =
exp{−vTΣ−1v/2}
(2π)n/2

√
detΣ

и вида градиента ∇g(v) = −g(v)Σ−1v. Тем самым (40) влечет

√
hM

{
φ(−

√
hCx+ ξ)

}
= −hLΣ−1Cx+ o(h). (41)

Аналогично получаем:

hM
{
φ(−

√
hCx+ ξ)φT (−

√
hCx+ ξ)

}
= hΦ+ o(h), (42)

где ковариационная матрица

Φ = Φ(Σ) = M
{
φ(ξ)φT (ξ)

}
(43)
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совпадает с матрицей KΣKT в случае (10) или имеет с последней
одинаковые диагональные элементы в случае (11).

Теперь из (39) и полученных соотношений следует

∆(tk+1|x) = hBBT + xxT + h
{
AxxT + x(Ax)T

}
−

− h
{
LΣ−1CxxT + x(LΣ−1Cx)T

}
+ hΦ+ o(h). (44)

Применяя (38) и исключая бесконечно малые порядка o(h),
получаем приближенную рекуррентную схему для определения
ковариационной матрицы ошибки нелинейного фильтра:

∆(tk+1) = ∆(tk) + h
{
(A − LΣ−1C)∆(tk) + ∆(tk)(A − LΣ−1C)T +

+ BBT + Φ
}
.

(45)

Данная схема будет устойчивой, если все собственные значения λi
матрицы

Λ = Λ(Σ) = A− LΣ−1C (46)

имеют отрицательные вещественные части Reλi, а шаг дискретизации h
настолько мал, что числа 1 + hRe[λi + λj ] при любых i, j = 1, . . . ,m
лежат внутри единичного интервала (−1, 1) (леммаИ.1 из [32]). Последнее
имеет место при

h < −1/Reλi ∀λi ∈ σ[Λ]. (47)

Если это выполнено, то при любом начальном условии решение
уравнения (45), которое представляет собой рекуррентный вариант
уравнения Ляпунова, сходится при k → ∞ к решению алгебраического
уравнения Ляпунова

Λ∆+∆ΛT +BBT +Φ = O, (48)
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причем его решение∆ существует и единственно в классеRm×m
+ (а также

будет положительно определенной матрицей, если BBT +Φ ≻ O).
В ситуации неизвестной матрицы интенсивности шума Σ

уравнение (48) дает лишь качественную оценку точности нелинейного
фильтра. Однако условие (47) вводит количественные ограничения на
параметры модели и численной схемы, т.е. на интенсивность шума
и размер шага, при которых разработанный алгоритм нелинейной
фильтрации является работоспособным.

Приведем пример, в котором можно дать явные оценки качества
предложенной нелинейной схемы фильтрации.

Прим е р 1. Рассмотрим одномерный вариант модели (13), т.е.
случайm = 1. Тогда для скалярного состояния X(t) имеем

Ẋ(t) = β υ(t), Ẏ (t) = X(t) + σ ε(t). (49)

Согласно (16) дисперсия стационарного фильтра Калмана-Бьюси
равна Q = σ2(β/σ) = βσ, так как G1,1 = 1.

В силу (26) нелинейный фильтр определяется уравнениями

˙̆
X(t) = φ

(
Ẏ (t)− X̆(t)

)
, φ(x) = β signx. (50)

С учетом ξ ∼ N (0, σ2) коэффициент (40) принимает вид

L = M{φ(ξ)ξ} = βM |ξ| = βσγ1, где γ1 =
√
2/π. (51)

Тогда Λ = −L(σ2)−1 = −γ1β/σ в силу (46).
Теперь условие (47) означает, что размер шага h надо выбирать так

чтобы h < γ−1
1 σ/β (иначе говоря h должен быть, как максимум, того же

порядка что интенсивность помех).
Если учесть (8), то K2σ2 = Q2(σ2)−1 = β2, откуда в силу (48)

получаем

∆ =
β2 +K2σ2

−2Λ
= γ−1

1 βσ = γ−1
1 Q, (52)
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где γ−1
1 =

√
π/2 ≈ 1,25. Тем самым дисперсия ошибки нелинейного

фильтра ∆ лишь на четверть больше дисперсии ошибки оптимального
фильтра Q, что в исходной шкале составляет около 11%.

Таким образом, синтезирована разностная схема, реализующая
искомый нелинейный фильтр; доказана несмещенность его оценок;
выведено рекуррентное уравнение для ковариационной матрицы ошибки
оценивания и получено условие устойчивости численной реализации
нелинейного фильтра.

5. Численный пример. Для иллюстрации предложенного
подхода рассмотрим одномерную модель движения маневрирующей
цели, положение которой описывается процессом κ(t), а ускорение
κ̈(t) представляет собой процесс броуновского движения, т.е. третья
производная ...κ (t) образует гауссовский белый шум c известной
интенсивностью β2. Допустим, что наблюдаемый процесс Y (t)
представляет собой результат измерения положения κ(t) с гауссовской
белошумной помехой неизвестной интенсивности σ2. Указанные
предположения записываются аналогично (13) приm = 3:

Ẋ1 = X2, Ẋ2 = X3, Ẋ3 = βυ(t), Ẏ = X1 + σε(t),

гдеX1(t) = κ(t),X2(t) = κ̇(t),X3(t) = κ̈(t), а υ(t) и ε(t) – независимые
стандартные гауссовские белые шумы.

Тогда уравнения оптимального фильтра (19), (20) принимают вид


˙̂
X1 = X̂2 + 2 (β/σ)1/3 [Ẏ (t)− X̂1],

˙̂
X2 = X̂3 + 2 (β/σ)2/3 [Ẏ (t)− X̂1],

˙̂
X3 = (β/σ) [Ẏ (t)− X̂1],

(53)

с учетом того, что уравнение Риккати (17) имеет следующее решение:

G =

 2 ⋆ ⋆
2 3 ⋆
1 2 2

 ,
(здесь и далее символ ⋆ используется для дублирования элементов
симметричной матрицы).
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Отсюда ковариационная матрица ошибки оптимальной оценки
равна

Q = σ2

 2 ρ1/3 ⋆ ⋆
2 ρ2/3 3 ρ ⋆
ρ 2 ρ4/3 2 ρ5/3

 , ρ = β/σ.

В силу (25), (26) получаем уравнения нелинейного фильтра,
которые не зависят от неизвестной интенсивности σ2:


˙̆
X1 = X̆2 + φ1(δ(t)), φ1(x) = 2β1/3 γ

−1/2
4/3 sign(x)|x|2/3,

˙̆
X2 = X̆3 + φ2(δ(t)), φ2(x) = 2β2/3 γ

−1/2
2/3 sign(x)|x|1/3,

˙̆
X3 = φ3(δ(t)), φ3(x) = β sign(x),

(54)

где δ(t) = Ẏ (t)− X̆1(t), причем γ 4/3 ≈ 0,831 и γ 2/3 ≈ 0,802.
Чтобы убедиться, что расхождение между ковариационной

матрицей используемого нелинейного преобразования и
требуемой ковариацией в (10) незначительно, приведем значения
коэффициентов (27):

 1 ⋆ ⋆

γ1
(
γ2/3γ4/3

)−1/2
1 ⋆

γ2/3
(
γ4/3

)−1/2
γ1/3

(
γ2/3

)−1/2
1

 =

 1 ⋆ ⋆
0,977. . . 1 ⋆
0,880 . . . 0,957. . . 1

 .
Нарисунке 2 приведены траектории исходного сигнала и его оценок,

полученных с помощью уравнений оптимального (53) и нелинейного (54)
фильтров. При этом нижний график в сравнении с верхним описывает
ситуацию, когда σ2, т.е. интенсивность шума в наблюдениях, увеличена
в 100 раз, а именно, σ было взято равным 5 и 50, соответственно.
Параметр β, определяющий интенсивность возмущений β2, был равен 3.

На рисунке приведены также границы, построенные
по правилу трех «сигм» на основе среднеквадратичной (с.к.)
ошибки оптимальной фильтрации (здесь одна «сигма» равна√
Q1,1 = σ

√
2 ρ1/3 =

√
2β1/6σ5/6). При вариации параметра σ

в 10 раз соответствующая с.к. ошибка
√
Q1,1 меняется примерно в 7 раз:

от 6,5 до 44,2 (ср. ширину коридора на верхнем и нижнем графиках).
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Таким образом, нелинейный фильтр, не использующий
информацию об интенсивности помех, демонстрирует поведение,
почти идентичное оптимальному фильтру, который основан на точном
знании характеристик измерительных ошибок.

Рис. 2. Траектория положения цели X1(t), оптимальная оценка X̂1(t),
нелинейная оценка X̆1(t) и границы радиуса три с.к. ошибки оптимального
фильтра (в двух экспериментах: на нижнем графике интенсивность шума σ2

в 100 раз больше, чем на верхнем)
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6. Заключение. В работе описан метод нелинейной фильтрации
(названный методом обратной статистической линеаризации),
предназначенный для оценивания состояния линейной стохастической
дифференциальной системы при наличии неизвестной интенсивности
гауссовских белошумных помех. Предложенный метод представляет
собой альтернативу двум подходам – робастному и адаптивному,
традиционно используемым в задачах управления и наблюдения
применительно к стохастическим системам с неопределенными
параметрами.

В статье описана многомерная система со скалярными
возмущениями и шумами, в которой предложенный метод приводит
к явному описанию нелинейного фильтра системой дифференциальных
уравнений (того же порядка, что и размерность вектора состояния).
Представлено обоснование разработанного метода нелинейной
фильтрации на основе асимптотического анализа соответствующей
разностной схемы для ковариационной матрицы ошибки. Результаты
численного эксперимента показывают, что погрешность оценивания
нелинейного фильтра остается на том же уровне, что и для оптимального
фильтра при вариации интенсивности помех на два порядка.

Идея изложенного выше метода фильтрация возникла у одного
из авторов в те годы, когда ему посчастливилось сотрудничать c
Юсуповым Рафаэлем Мидхатовичем в области разработки алгоритмов
автоматического управления для технических систем общего и
специального назначения. Памяти этого выдающегося ученого и
неординарного человека посвящается данная статья.
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Abstract. The paper describes the method of inverse statistical linearization – the method of
nonlinear filtering for state estimation in linear Gaussian differential systems with observation
noise of unknown intensity. The proposed technique is based on finding a nonlinear perturbation
of the innovation process while keeping the gain coefficient in the Kalman-Bucy filter. As a result,
the nonlinear filter is defined by a system of differential equations of the same order as the state
vector without using any additional equations for the error covariance matrix. The nonlinear filter
is found in an analytical form for a one-dimensional motion model in which only the highest order
derivative is affected by a white-noise stochastic disturbance, and only one output is available for
observing the position with additive noise of unknown intensity. The recurrent nonlinear filtering
scheme is examined to establish the unbiasedness of the estimates and to obtain the steady-state
equation for their error variances and covariances. The theoretical results are confirmed on the
basis of computer simulations carried out to compare the estimation accuracy of the optimal filter
and the proposed nonlinear filtering scheme.

Keywords: nonlinear filtering, unknown noise intensity, linear stochastic differential system,
Kalman-Bucy filter.
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