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Аннотация. В настоящей работе предложен метод коррекции траектории камеры в 
задаче монокулярной визуальной одометрии на основе фильтра Калмана. Рассмотрен 
подход, в котором неоднозначность масштаба разрешается не через восстановление 
трёхмерной структуры сцены, а через последовательное использование относительных 
смещений между текущим и несколькими предыдущими положениями камеры. Такой 
подход снижает зависимость от долговременного отслеживания одних и тех же 
ключевых точек и делает метод применимым в условиях ограниченного параллакса, 
повторяющихся текстур и частичных окклюзий. Подобное представление повышает 
чувствительность метода к шумам. Для компенсации этого недостатка применяется 
фильтр Калмана, который предотвращает накопление ошибок при последовательных 
оценках и обеспечивает корректность работы даже при отсутствии сведений о движении 
камеры, а также позволяет учитывать качество измерений и их достоверность. В рамках 
работы представлены модель состояния и модель наблюдений, позволяющие уточнять 
положение камеры, используя только данные последовательных наблюдений. Состояние 
формируется в виде скользящего окна из текущего и нескольких предыдущих 
положений камеры, а наблюдения строятся из направлений относительных смещений, 
оцениваемых по паре или набору кадров, без восстановления трёхмерной структуры 
сцены. В отличие от распространённых фильтров Калмана с ограничениями на 
множественные состояния системы (MSCKF), которые обычно интегрируют данные от 
инерциальных датчиков, предложенный метод использует исключительно информацию, 
извлекаемую из последовательности кадров. Эффективность метода подтверждена на 
синтетических данных в различных сценариях движения.  

Ключевые слова: визуальная одометрия, фильтр Калмана, монокулярное зрение, 
оценка положения, робототехника. 
 

1. Введение. Визуальная одометрия [1 – 3] представляет собой 
задачу оценки собственного движения камеры или робота на основе 
последовательности изображений. Точность таких оценок критически 
важна для автономной навигации [4 – 6], включая управление 
беспилотными летательными аппаратами [7, 8] и мобильными 
платформами. Традиционные методы, такие как восстановление 
структуры из движения (Structure from Motion, SfM) [9] и 
одновременная локализация и построение карты (Simultaneous 
Localization and Mapping, SLAM) [10], активно исследуются в 
последние десятилетия [11]. Известные методы оптимизации 
траектории, такие как групповая корректировка (bundle 
adjustment) [12], позволяют минимизировать ошибки репроекции, 
однако высокая вычислительная сложность ограничивает их 
применение в реальном времени [13]. 
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Визуальная одометрия исторически развивалась в русле двух 
парадигм – прямых и признаковых методов – с последующим 
появлением гибридных подходов. Прямые методы минимизируют 
фотометрическую ошибку между кадрами, что обеспечивает высокую 
точность при стабильных условиях освещения и достаточном 
параллаксе. Признаковые методы опираются на детекторы и 
дескрипторы (например, SIFT/ORB/AKAZE), что делает их 
устойчивыми к умеренным фотометрическим и геометрическим 
искажениям, но чувствительными к деградации текстуры. Гибридные 
методы стремятся объединить преимущества обеих групп, дополняя 
геометрию фотометрией и наоборот, что особенно важно в 
динамических сценах и при малом параллаксе. 

Задачи SfM/SLAM и одометрии находятся в тесной связи, но 
отличаются постановкой: SLAM нацелен на совместную оценку 
траектории и карты, тогда как одометрия обычно ограничивается 
локальной последовательной оценкой положения и ориентации 
камеры без явного построения глобальной карты. Это различие 
приводит к компромиссу между точностью и вычислительной 
сложностью: в то время как глобальные оптимизации (bundle 
adjustment) обеспечивают минимизацию ошибок репроекции на 
больших окнах, они труднее масштабируются для строго реального 
времени на ограниченных вычислительных ресурсах. В этой связи 
модели со скользящим окном и рекурсивной фильтрацией выглядят 
практически привлекательными. 

В связи с этим активно исследуются подходы, позволяющие 
повысить точность и устойчивость при меньших вычислительных 
затратах. Одним из таких подходов является использование фильтра 
Калмана [14 – 16], который обеспечивает рекурсивную оценку 
состояния системы с учётом неопределённостей процесса и измерений. 
Как правило, фильтр Калмана применяется в составе визуально-
инерциальных систем [17, 18], а также в сочетании с данными 
лидара [19], что обеспечивает высокую точность и устойчивость, но 
делает систему более сложной. Наибольшее распространение 
получили фильтры Калмана с ограничениями на множественные 
состояния системы (multi-state constraint Kalman filter, MSCKF) [20], 
где объединяются данные от нескольких последовательных положений 
камеры и инерциальных датчиков. Эти методы демонстрируют 
высокую точность, но требуют наличия и калибровки инерциальных 
датчиков, что повышает требования к аппаратной части. 

С практической точки зрения, зависимость от инерциальных 
датчиков приводит к дополнительным этапам межсенсорной 
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калибровки, синхронизации и подавления смещений и дрейфа 
акселерометров и гироскопов. Более того, для лёгких и 
энергоограниченных платформ (микро-БПЛА, наземные мобильные 
микророботы) минимизация числа сенсоров часто является ключевым 
требованием. Поэтому варианты, использующие исключительно 
визуальные данные при сохранении устойчивости оценок, 
представляют особую ценность для реальных применений. 

В настоящей работе рассматривается метод, использующий 
только визуальную информацию. Он сохраняет идею MSCKF – 
учитывать несколько последовательных положений камеры, – но 
устраняет зависимость от дополнительных сенсоров. Такой подход 
позволяет: 

− работать исключительно с изображениями; 
− адаптивно учитывать качество измерений (например, число 

верно сопоставленных точек после применения метода RANSAC [21], 
ошибку репроекции, величину параллакса); 

− обеспечивать устойчивость даже в условиях сложных сцен, 
когда отслеживание одних и тех же ключевых точек на 
последовательных кадрах затруднено. 

Работа демонстрирует применение фильтра Калмана для задачи 
коррекции траектории, полученной в результате визуальной одометрии. 
Предлагается модель состояния в виде скользящего окна из текущего и 
нескольких предыдущих положений камеры, что позволяет учитывать 
краткосрочную динамику без явного ввода скоростей и ускорений. 
Формируется модель наблюдений, основанная на согласовании 
направлений относительных смещений, оцениваемых по набору кадров, 
что устраняет необходимость восстановления трёхмерной структуры 
сцены и уменьшает зависимость от долговременного отслеживания 
одних и тех же точек. Вводится схема адаптивного взвешивания 
наблюдений по метрикам качества сопоставления, позволяющая 
повышать робастность к выбросам и шумам в визуальных данных. 
Метод ориентирован на работу в реальном времени и не требует 
инерциальных сенсоров, что снижает аппаратную сложность системы. 

Помимо методологической значимости, подход имеет 
практическую ценность для задач автономной навигации в условиях 
отсутствия GPS/ГНСС (склады, шахты, помещения со сложной 
геометрией), а также при ограниченном параллаксе (движение вдоль 
оси оптического луча, повторяющиеся или однородные текстуры). В 
таких сценариях отказ от восстановления плотной карты и 
использование направлений смещений в сочетании с фильтрацией по 
Калману создают устойчивую альтернативу тяжёлым глобальным 
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оптимизациям. В настоящей работе метод демонстрируется на задаче 
уточнения положения; при этом общая постановка распространяется и 
на оценку ориентации камеры. 

2. Описание задачи. Целью исследования является разработка 
метода коррекции траектории камеры на основе последовательности 
монокулярных изображений с использованием фильтра Калмана. 
Входными данными служат оценки относительного движения, 
полученные стандартными методами определения положения и 
ориентации камеры по паре кадров (например, через 
фундаментальную или существенную матрицу). Эти оценки, как 
правило, надёжно задают направление смещения между положениями 
камеры, но не определяют масштаб (величину смещения). 

Предполагается, что камера жёстко закреплена на движущемся 
носителе (рисунок 1). Для корректной работы монокулярной 
визуальной одометрии признаки желательны к наблюдению не менее 
чем в трёх последовательных кадрах. На практике это требование 
регулярно нарушается (динамические сцены, слабоструктурированные 
поверхности, изменения освещения), из-за чего традиционная 
схема [3], предполагающая восстановление трёхмерных точек, быстро 
теряет устойчивость. 

 

 
Рис. 1. Модель съёмки 

 
Как правило, процедура оценки траектории движения состоит 

из следующих шагов: 
1. Извлечение признаков на первом и втором кадрах. 
2. Сопоставление признаков между кадрами и оценка 

относительного поворота и смещения (например, 5-точечным 
алгоритмом). Так как смещение задано с точностью до масштаба, на 
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этом этапе вводится произвольный масштаб между первыми двумя 
положениями. 

3. Извлечение признаков на следующем (третьем) кадре и 
сопоставление с ранее отобранными признаками. 

4. Оценка относительного движения между текущим 
положением и несколькими предыдущими (обычно двумя и более), 
получая направления смещений из каждого предыдущего положения к 
текущему (рисунок 2). 

5. Коррекция текущих координат камеры по информации, 
накопленной к текущему моменту. 

6. Переход к следующему кадру и повторение процедуры, 
начиная с шага 4. 
 

 
Рис. 2. Коррекция положения камеры 

 
Отличие настоящей работы заключается в том, что на шаге 5 

производится согласование направлений из нескольких предыдущих 
положений. Масштаб между первыми двумя кадрами задаётся 
произвольно. Далее для каждого последующего кадра 
рассматриваются несколько направлений смещения, оценённых 
относительно нескольких предыдущих положений (например, из 
положения на двух предыдущих к текущему). Геометрически это 
соответствует согласованию нескольких лучей: искомое положение 
для текущего положения выбирается как точка, наиболее 
согласующаяся с лучами, выходящими из предыдущих положений 
вдоль оценённых направлений. Такой подход не требует 
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восстановления трёхмерных точек сцены и не опирается на сохранение 
одних и тех же ключевых точек в соседних кадрах, что делает его 
применимым в трудных для отслеживания сценах (низкая текстура, 
повторяющиеся паттерны, быстро меняющиеся детали). 

Как правило, в литературе этот способ редко описывается и 
применяется, поскольку чувствителен к угловым ошибкам 
направлений и к флуктуациям оценок относительных смещений. В 
настоящей работе этот недостаток компенсируется фильтром Калмана, 
который сглаживает случайные отклонения и препятствует 
накоплению ошибок в траектории, работает исключительно по 
визуальным данным, не требуя наличия инерциальных датчиков или 
других дополнительных сенсоров, а также учёт качества измерений, 
например, по доле выбросов после RANSAC. 

3. Описание метода 
Уравнение состояния. Для описания движения камеры будем 

использовать вектор состояния, включающий несколько предыдущих 
положений. Пусть положение камеры в момент времени t задаётся 
вектором 𝐩𝐩𝑡𝑡 ∈ 𝑅𝑅3. 

Тогда вектор состояния определяется как 
 

𝐱𝐱𝑡𝑡 =

⎣
⎢
⎢
⎢
⎡
𝐩𝐩𝑡𝑡
𝐩𝐩𝑡𝑡−1
𝐩𝐩𝑡𝑡−2
⋮

𝐩𝐩𝑡𝑡−𝑘𝑘⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐗𝐗𝑡𝑡
𝐘𝐘𝑡𝑡
𝐙𝐙𝑡𝑡
𝐗𝐗𝑡𝑡−1
𝐘𝐘𝑡𝑡−1
𝐙𝐙𝑡𝑡−1
⋮

𝐗𝐗𝑡𝑡−𝑘𝑘
𝐘𝐘𝑡𝑡−𝑘𝑘
𝐙𝐙𝑡𝑡−𝑘𝑘⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∈ ℝ3(𝑘𝑘+1). 

 
В отличие от традиционных схем, в нашем случае скорость и 

ускорение не включаются в явном виде в состояние системы, а при 
необходимости извлекается из последовательности положений 
камеры. Так, например, скорость может быть извлечена через 
конечные разности как: 

 
𝐯𝐯�𝑡𝑡 = 𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−1. 

 
Соответственно, прогноз текущего положения выполняется по 

формуле линейной экстраполяции 
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𝐩𝐩𝑡𝑡+1 ≈ 𝐩𝐩𝑡𝑡 + 𝐯𝐯�𝑡𝑡 = 𝟐𝟐𝟐𝟐𝑡𝑡 − 𝐩𝐩𝑡𝑡−1. 
 
Уравнение состояния описывает эволюцию системы во времени 

и записывается в виде: 
 

𝐱𝐱𝑡𝑡 = 𝐅𝐅𝐱𝐱𝑡𝑡−1 + 𝐰𝐰𝑡𝑡, 
 
где 𝐅𝐅  – матрица перехода, экстраполирующая новое состояние по 
предыдущим данным, 𝐰𝐰𝑘𝑘  – процессный шум, моделирующий 
неопределённость прогноза (например, из-за изменения скорости или 
манёвров). 

Поскольку состояние 𝐱𝐱𝑡𝑡  состоит из текущей позиции и k 
предыдущих, структура 𝐅𝐅 естественным образом блочная. Очевидно, 
что для нового состояния 𝐱𝐱𝑡𝑡+1  положения камеры в предыдущие 
моменты времени 𝐩𝐩𝑡𝑡+1−𝑖𝑖 , 𝑖𝑖 = 1, 𝑘𝑘�����  переносятся из предыдущего шага 
без изменений, то есть нижняя часть матрицы содержит единичные 
3×3 блоки на поддиагонали, обеспечивая сдвиг состояний.  

Текущее положение экстраполируется с использованием двух 
последних точек траектории 𝐩𝐩𝑡𝑡 ≈ 𝟐𝟐𝐩𝐩𝑡𝑡−1 − 𝐩𝐩𝑡𝑡−2 . Соответственно, 
верхняя блок-строка 𝐅𝐅  имеет ненулевые коэффициенты при блоках, 
соответствующих 𝐩𝐩𝑡𝑡−1 и 𝐩𝐩𝑡𝑡−2 (например, 2𝐈𝐈 и −𝐈𝐈) тогда как остальные 
блоки в этой строке равны нулю. Таким образом, матрица 𝐅𝐅 
приобретает вид 

 

𝐅𝐅 =

⎣
⎢
⎢
⎢
⎢
⎡
𝟐𝟐𝟐𝟐 −𝐈𝐈 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝐈𝐈 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐈𝐈 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝐈𝐈 𝟎𝟎⎦

⎥
⎥
⎥
⎥
⎤

, 

 
где 𝐈𝐈  – единичная матрица размерности 3x3, 𝟎𝟎  – нулевая матрица 
размерности 3x3. 

Такое построение матрицы перехода одновременно остаётся 
простым вычислительно и позволяет учитывать краткосрочную 
динамику движения без явного введения скоростей и ускорений в 
состояние. За счёт процессного шума 𝐰𝐰  модель остаётся гибкой и 
устойчивой к отклонениям от идеальной модели постоянной скорости. 

При необходимости точность прогноза можно повысить 
введением дополнительных слагаемых, учитывающих ускорение или 
повороты камеры. Следует добавить, что предложенная схема 
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позволяет гибко увеличивать окно учитываемых позиций в 
зависимости от доступной памяти и вычислительных возможностей. 
Например, при наличии аппаратного ускорения (параллельной 
обработки или GPU) можно расширить окно до 6–8 позиций, что 
позволяет более надёжно сглаживать шум и предсказывать траекторию 
в условиях низкого параллакса. На практике размер окна следует 
выбирать как компромисс между точностью и допустимой задержкой 
в конкретной системе реального времени. 

Ковариационная матрица процесса. Ковариационная матрица 
ошибки состояния 𝐏𝐏𝑡𝑡  отражает нашу уверенность в прогнозе и на 
каждом шаге пересчитывается с учётом динамики модели. В рамках 
фильтра Калмана это делается по стандартной формуле 
 

𝐏𝐏𝑡𝑡 = 𝐅𝐅𝐏𝐏𝑡𝑡−1𝐅𝐅𝑇𝑇 + 𝐐𝐐𝑡𝑡, 
 
где первый член переносит накопленную неопределённость через 
матрицу перехода F, а 𝐐𝐐𝑡𝑡 моделирует неточность прогноза, связанную 
с неожиданными изменениями движения. 

Учитывая структуру состояния (текущее и k предыдущих 
положения), естественно задавать 𝐐𝐐𝑡𝑡 так, чтобы шум процесса влиял 
прежде всего на текущую компоненту, а прошлые позиции лишь 
переносились со своей уже накопленной неопределённостью. 
Практически это выражается в блочно-диагональной форме 
 

𝐐𝐐𝑡𝑡 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑞𝑞𝐈𝐈 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎⎦

⎥
⎥
⎥
⎥
⎤

, 

 
где 𝐈𝐈 – единичная матрица размерности 3x3, а 𝑞𝑞 > 0 – коэффициент, 
отвечающий за погрешность прогнозирования.  

Чем более изменчивым ожидается движение (резкие ускорения, 
манёвры), тем большим следует выбирать 𝑞𝑞; при плавной, близкой к 
равномерной траектории 𝑞𝑞  можно уменьшать. Так, если движение 
камеры предсказуемо и плавно (например, при съёмке с робота на 
колёсах), величина дополнительного шумового члена может быть 
уменьшена для повышения точности оценки. В противоположность 
этому, при резких манёврах разумно увеличить ковариацию процесса, 
чтобы фильтр быстрее реагировал на новые измерения. 
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Такой выбор 𝐐𝐐𝑡𝑡 позволяет явно учитывать неопределённость в 
экстраполяции текущего положения, не увеличивая ковариацию для 
уже наблюдённых поз прошлого окна, а также сохранять простоту 
модели и стабильность оценки, поскольку дополнительные 
корреляции между блоками вносит сама операция 𝐅𝐅𝐏𝐏𝑡𝑡−1𝐅𝐅𝑇𝑇. 

При наличии априорных сведений о направлении большей 
вариабельности (например, ограничения по высоте или доминирующее 
движение в плоскости) матрицу 𝐐𝐐𝑡𝑡  можно сделать анизотропной, 
заменив 𝐐𝐐𝑡𝑡 = 𝑞𝑞𝐈𝐈  на 𝐐𝐐𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑞𝑞𝑥𝑥,𝑞𝑞𝑦𝑦,𝑞𝑞𝑧𝑧�  с различными дисперсиями 
по осям. Если шум естественнее задавать в системе камеры, допустимо 
учитывать ориентацию и задавать 𝐐𝐐𝑡𝑡 = 𝐑𝐑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑞𝑞𝑥𝑥,𝑞𝑞𝑦𝑦,𝑞𝑞𝑧𝑧�𝐑𝐑𝑻𝑻  для 
текущего блока. В любом случае ключевая идея сохраняется: на 
каждом шаге ковариация процесса добавляется прежде всего к 
компоненте, отвечающей за текущее положение, что позволяет 
фильтру гибко реагировать на изменения характера движения. 

Уравнение наблюдения. Уравнение наблюдения связывает 
состояние системы с измерениями: 
 

𝐳𝐳𝑡𝑡 = 𝐇𝐇𝑡𝑡𝐱𝐱𝑡𝑡 + 𝐯𝐯𝑡𝑡, 
 
где: 

𝐱𝐱𝑡𝑡 – вектор измерений (проекции точек сцены на изображение); 
𝐇𝐇𝑡𝑡 – матрица наблюдения; 
𝐯𝐯𝑡𝑡 – шум измерений. 
Пусть в каждый новый момент времени t методами визуальной 

одометрии выполняется оценка относительного смещения текущего 
положения камеры относительно нескольких предыдущих. На 
практике визуальная одометрия надёжно определяет направление 
смещения 𝐝𝐝  (как правило, нормированное, ‖𝐝𝐝‖ = 1 ) от положения 
𝐩𝐩𝒊𝒊, 𝑖𝑖 ∈ {𝑡𝑡 − 1, 𝑡𝑡 − 𝑘𝑘} к новому положению 𝐩𝐩𝒊𝒊, но абсолютное значение 
(масштаб) этого смещения неизвестно. 

Таким образом, задана прямая, на которой расположены новые 
координаты, через предыдущие известные координаты 𝐩𝐩𝑡𝑡−𝑖𝑖  и 
направление 𝐝𝐝𝑡𝑡,𝑖𝑖 с точностью до неизвестного коэффициента α: 

 
𝐩𝐩𝑡𝑡 = 𝐩𝐩𝑡𝑡−𝑖𝑖 + 𝛼𝛼𝐝𝐝𝑡𝑡,𝑖𝑖, 

 
Рассмотрим проекцию 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝐝𝐝𝑡𝑡,𝑖𝑖
(𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖) =

(𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖) ⋅ 𝐝𝐝𝑡𝑡,𝑖𝑖

𝐝𝐝𝑡𝑡,𝑖𝑖 ⋅ 𝐝𝐝𝑡𝑡,𝑖𝑖
𝐝𝐝𝑡𝑡,𝑖𝑖 

 
вектора смещения 𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖  на направление 𝐝𝐝𝑡𝑡,𝑖𝑖 . В случае, если 
направление 𝐝𝐝𝑡𝑡,𝑖𝑖 и векторы смещения вычислены точно, эта проекция 
равна: 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝐝𝐝𝑡𝑡,𝑖𝑖
(𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖) =

�𝛼𝛼𝐝𝐝𝑡𝑡,𝑖𝑖� ⋅ 𝐝𝐝𝑡𝑡,𝑖𝑖

𝐝𝐝𝑡𝑡,𝑖𝑖 ⋅ 𝐝𝐝𝑡𝑡,𝑖𝑖
𝐝𝐝𝑡𝑡,𝑖𝑖 = 𝛼𝛼𝐝𝐝𝑡𝑡,𝑖𝑖 = 𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖 . 

 
Таким образом, для каждой пары 𝐩𝐩𝑡𝑡 ,𝐩𝐩𝑡𝑡−𝑖𝑖  можно задать 

наблюдение в момент времени t в виде: 
 

𝐡𝐡𝑡𝑡,𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝐝𝐝𝑡𝑡,𝑖𝑖
(𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖) − (𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖) = (𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖) ⋅ 𝐝𝐝𝑡𝑡,𝑖𝑖 ⋅ 𝐝𝐝𝑡𝑡,𝑖𝑖 −

(𝐩𝐩𝑡𝑡 − 𝐩𝐩𝑡𝑡−𝑖𝑖) = �𝐝𝐝𝑡𝑡,1𝐝𝐝𝑡𝑡,1
𝑻𝑻 − 𝐈𝐈�𝐩𝐩𝑡𝑡 − �𝐝𝐝𝑡𝑡,1𝐝𝐝𝑡𝑡,1

𝑻𝑻 − 𝐈𝐈�𝐩𝐩𝑡𝑡−𝑖𝑖 = 𝟎𝟎. 
 
Для каждого предыдущего состояния формируется одно 

наблюдение такого рода, в результате чего итоговая матрица 
наблюдения приобретает вид: 

 

𝐇𝐇𝑘𝑘 =

⎣
⎢
⎢
⎢
⎡𝐝𝐝𝑡𝑡,1𝐝𝐝𝑡𝑡,1

𝑻𝑻 − 𝐈𝐈 −𝐝𝐝𝑘𝑘−1𝐝𝐝𝑘𝑘−1𝑻𝑻 + 𝐈𝐈 𝟎𝟎 ⋯ 𝟎𝟎
𝐝𝐝𝑡𝑡,2𝐝𝐝𝑡𝑡,2

𝑻𝑻 − 𝐈𝐈 𝟎𝟎 −𝐝𝐝𝑘𝑘−2𝐝𝐝𝑘𝑘−2𝑻𝑻 + 𝐈𝐈 ⋯ 𝟎𝟎
⋮ ⋮ ⋮ ⋱ ⋮

𝐝𝐝𝑡𝑡,𝑘𝑘𝐝𝐝𝑡𝑡,𝑘𝑘
𝑻𝑻 − 𝑰𝑰 𝟎𝟎 𝟎𝟎 ⋯ −𝐝𝐝𝑡𝑡,𝑘𝑘𝐝𝐝𝑡𝑡,𝑘𝑘

𝑻𝑻 + 𝐈𝐈⎦
⎥
⎥
⎥
⎤
. 

 
Такая модель наблюдений удобна для интеграции с 

существующими блоками визуальной одометрии, поскольку не 
требует модификации внутренней логики сопоставления признаков. 
Фактически она позволяет использовать уже имеющиеся результаты 
относительных оценок движения и лишь дополнять их статистическим 
уточнением через фильтр Калмана. 

Ковариационная матрица шума измерений. Поскольку 
наблюдения формируются на основе результатов визуальной 
одометрии и неизбежно содержат ошибки (неточности сопоставления, 
угловые ошибки направлений, неопределённость масштаба), их 
достоверность необходимо учесть. Ковариационная матрица шума 
измерений 𝐯𝐯𝑡𝑡 задаётся как 
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𝐑𝐑𝑡𝑡 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎𝑡𝑡−1𝐈𝐈 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝜎𝜎𝑡𝑡−2𝐈𝐈 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝜎𝜎𝑡𝑡−3𝐈𝐈 ⋯ 𝟎𝟎 𝟎𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝜎𝜎𝑡𝑡−𝑘𝑘𝐈𝐈⎦

⎥
⎥
⎥
⎥
⎤

, 

 
где 𝜎𝜎𝑡𝑡−𝑖𝑖2  – дисперсия i-го скалярного измерения 𝑧𝑧𝑖𝑖. Тем самым каждое 
наблюдение получает собственный вес в зависимости от качества 
оценки. 

Практически 𝜎𝜎𝑡𝑡−𝑖𝑖2  могут быть одинаковыми при отсутствии 
информации о качестве визуальной одометрии, либо выбираться на 
основе доступных метрик, например: 

- количество сопоставленных ключевых точек и доля 
выбросов (после RANSAC); 

- средняя или медианная ошибка репроекции; 
- оценка неопределённости существенной или 

фундаментальной матрицы; 
- величина параллакса (больший параллакс – меньшая 

неопределённость). 
Нормировка направлений 𝐝𝐝𝑡𝑡,𝑖𝑖  делает наблюдения 𝑧𝑧𝑖𝑖 

сопоставимыми по шкале, что упрощает калибровку 𝐑𝐑𝑡𝑡. При наличии 
априорной информации допускается адаптивная схема: 𝐑𝐑𝑡𝑡 
пересчитывается на каждом шаге по выбранным метрикам качества, 
благодаря чему фильтр автоматически уменьшает влияние 
ненадёжных наблюдений и усиливает вклад более точных. Такой 
механизм повышает устойчивость оценки в условиях переменного 
уровня шума и наличия выбросов. 

В итоге совокупность представленных уравнений состояния, 
наблюдений и ковариаций образует полную схему фильтра Калмана, 
предназначенного для визуальной одометрии без инерциальных данных. 
Такое построение обеспечивает баланс между простотой реализации и 
достаточной точностью, позволяя применять метод как на мощных 
вычислительных платформах, так и на встраиваемых устройствах. 

4. Экспериментальное исследование на синтетических 
данных. Для демонстрации принципиальной работоспособности 
подхода использовались генерированные данные. Такой формат 
позволяет контролировать траекторию движения, уровень шума и 
параметры наблюдений, а значит – корректно сравнивать методы в 
одинаковых условиях. 

Моделирование движения аппарата выполнялось в трёх 
сценариях: 
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- линейная траектория с незначительными отклонениями; 
- круговая траектория; 
- произвольная траектория со случайным изменением 

скорости и направления. 
Для каждой из этих траекторий моделирование движения 

аппарата производилось следующим образом. 
Линейная траектория с незначительными отклонениями: 
 

𝐩𝐩𝑖𝑖+1 = 𝐩𝐩𝑖𝑖 + 𝚫𝚫𝒑𝒑 ⋅ 𝑣𝑣𝑖𝑖 + 𝒩𝒩�0,𝜎𝜎𝑝𝑝2�, 
 

𝑣𝑣𝑖𝑖+1 = 𝑣𝑣𝑖𝑖 + 𝒩𝒩(0,𝜎𝜎𝑣𝑣2), 
 
где 𝐩𝐩𝑖𝑖  – точка траектории, 𝚫𝚫𝒑𝒑  – направление движения, 𝑣𝑣𝑖𝑖  – 
абсолютное значение скорости камеры, 𝜎𝜎𝑝𝑝2 – дисперсия отклонения от 
траектории, 𝜎𝜎𝑣𝑣2  – дисперсия скорости. Изначальная скорость 𝑣𝑣𝑖𝑖 
задаётся при моделировании. Начальное положение точки задано как 
(0, 0, 0). Такая траектория позволяет оценить качество траектории для 
случаев, когда соответствующие лучи практически коллинеарны. 

Круговая или эллиптическая траектория: 
 

𝐩𝐩𝑖𝑖 = 𝑐𝑐 + (cos(𝜓𝜓𝑖𝑖) ⋅ 𝑅𝑅𝑥𝑥 + sin(𝜓𝜓𝑖𝑖) ⋅ 𝑅𝑅𝑦𝑦)  + 𝒩𝒩�0,𝜎𝜎𝑝𝑝2�, 
 

𝜓𝜓𝑖𝑖 = 𝜓𝜓𝑖𝑖+1 + 𝑣𝑣𝑖𝑖, 
 

𝑣𝑣𝑖𝑖+1 = 𝑣𝑣𝑖𝑖 + 𝒩𝒩(0,𝜎𝜎𝑣𝑣2), 
 
где 𝐩𝐩𝑖𝑖 – точка траектории, 𝑐𝑐 – центр круга или эллипса, 𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦 – полуоси 
эллипса, 𝜓𝜓𝑖𝑖 – угловое положение камеры, 𝑣𝑣𝑖𝑖 – угловая скорость камеры, 
𝜎𝜎𝑝𝑝2  – дисперсия отклонения от траектории, 𝜎𝜎𝑣𝑣2  – дисперсия скорости. 
Изначальная скорость 𝑣𝑣𝑖𝑖 задаётся при моделировании. 

Произвольная траектория со случайным изменением 
направления и абсолютного значения скорости: 

 
𝐩𝐩𝑖𝑖+1 = 𝐩𝐩𝑖𝑖 + 𝐯𝐯𝑖𝑖 + 𝒩𝒩�0,𝜎𝜎𝑝𝑝2�, 

 
𝐯𝐯𝑖𝑖+1 = 𝐯𝐯𝑖𝑖 + 𝒩𝒩(0,𝜎𝜎𝑣𝑣2), 

 
где 𝐩𝐩𝑖𝑖  – точка траектории, 𝐯𝐯𝒊𝒊  – скорость камеры, 𝜎𝜎𝑝𝑝2  – дисперсия 
отклонения от траектории, 𝜎𝜎𝑣𝑣2  – дисперсия скорости. Изначальная 
скорость 𝑣𝑣𝑖𝑖 задаётся при моделировании. Начальное положение точки 
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задано как (0, 0, 0). Такая траектория позволяет оценить качество 
траектории для случаев, когда скорость значительно меняется во 
времени как по амплитуде, так и по направлению, вследствие чего 
погрешность прогноза нового состояния системы велика. 

С использованием известных положений камеры были 
вычислены точные значения направлений 𝐝𝐝𝑡𝑡,𝑖𝑖 , после чего они 
зашумлялись аддитивным гауссовым шумом, моделирующим 
погрешности визуальной одометрии (ошибки сопоставления). 
Интенсивность шума варьировалась через параметр SNR. 

Было рассмотрено два подхода к определению следующего 
положения камеры: 

1. Метод минимизации расстояний. Используется k 
предыдущих положений аппарата и направление смещения 
относительно каждого. Минимизируется сумма расстояний от 
соответствующих прямых. 

 
𝐩𝐩𝑡𝑡 = min�∑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑙𝑙𝑡𝑡,𝑘𝑘,𝐩𝐩��, 

 
𝑙𝑙𝑡𝑡,𝑘𝑘 – прямая, заданная точкой 𝐩𝐩𝑡𝑡−𝑘𝑘 и направлением 𝐝𝐝𝑡𝑡,𝑘𝑘, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑙𝑙𝑡𝑡,𝑘𝑘,𝐩𝐩� – 
расстояние от точки до прямой. 

2. Предложенный метод (фильтр Калмана). Используется k 
предыдущих положений аппарата и направление смещение 
относительно каждого. Применяется фильтр Калмана для уточнения 
положения. 

Также иногда применяется проход, при котором используется 
только одно предыдущее положение аппарата и направление 
смещения. Поскольку при изменении скорости такой подход 
демонстрирует нестабильность и существенные ошибки, в ходе 
эксперимента он не использовался.  

В качестве метрики качества далее используется отклонение по 
всем точкам траектории; анализ проводится для всех трёх типов 
движения и различных уровней шума. Далее будут представлены 
результаты сравнения традиционного и предложенного методов в 
условиях неизвестных свойств шума. 

Оценка качества проводилась на синтетических траекториях для 
трёх сценариев движения: линейного с незначительными 
отклонениями, кругового и произвольного с изменяющейся скоростью 
и направлением. Для каждого сценария рассматривались различные 
уровни шума наблюдений (SNR = 50, 60, 70). В качестве метрики 
использовалось среднее отклонение по всем точкам траектории. 
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Рис. 3. Линейная траектория с незначительными отклонениями, зависимость 

среднего отклонения от номера кадра (сверху вниз, SNR: 50, 60, 70) 
 

 
Рис. 4. Круговая траектория, зависимость среднего отклонения от номера 

кадра (сверху вниз, SNR: 50, 60, 70) 
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Рис. 5. Произвольная траектория со случайным изменением скорости, 

зависимость среднего отклонения от номера кадра (сверху вниз, SNR: 50, 60, 70) 
 

Экспериментальное исследование показало, что предложенный 
метод на основе фильтра Калмана обеспечивает более устойчивую и 
точную оценку положения по сравнению с традиционной 
триангуляцией. Наиболее заметное преимущество наблюдается на 
круговой траектории и при высоких уровнях шума, что указывает на 
робастность предлагаемого решения к неблагоприятным условиям. 

5. Заключение. В данной работе предложен метод коррекции 
траектории камеры в задаче визуальной одометрии с использованием 
фильтра Калмана. Предложены модель состояний, матрица перехода и 
модель наблюдений, обеспечивающие решение поставленной задачи. 

Экспериментально показано, что предложенный метод 
обеспечивает более высокую точность оценки положения по 
сравнению с базовыми подходами, особенно в условиях переменного 
шума и наличия выбросов в данных. Это делает его перспективным 
для применения в реальных системах визуальной одометрии, включая 
автономные транспортные средства, БПЛА и мобильных роботов. 

Основными достоинствами предложенного метода являются: 
- Возможность работы только с визуальными данными, без 

необходимости использования дополнительных сенсоров. 
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- Адаптивная настройка параметров фильтра на основе 
оценки достоверности измерений. 

- Высокая устойчивость к шумам и выбросам в данных. 
- Возможность работы в реальном времени благодаря низкой 

вычислительной сложности. 
В дальнейшем планируется провести тестирование в реальных 

условиях для оценки применимости метода в практических сценариях.  
Для авторов большая честь участвовать данной статьёй 

в журнале, посвящённом памяти выдающегося учёного, члена-
корреспондента РАН Рафаэля Мидхатовича Юсупова. 

Тематика статьи относится к научным интересам Р.М. Юсупова, 
который проводил исследования в области теории управления полётом 
летательных аппаратов, теории адаптивных систем. 

С Самарой и Самарским университетом имени академика 
С.П. Королева Рафаэля Мидхатовича связывали многолетние 
творческие и дружеские отношения. Будучи волжанином, 
Р.М. Юсупов часто бывал в Самаре, принимал участие в научных 
конференциях, общался с профессорско-преподавательским составом, 
научными работниками и студентами. 

Творческое наследие Р.М. Юсупова способствует развитию 
научных исследований, а обаяние его личности остаётся в нашей памяти. 
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V. SOIFER, Y. GOSHIN  
VISUAL ODOMETRY WITH TRAJECTORY CORRECTION 

BASED ON KALMAN FILTER 
 
Soifer V., Goshin Y. Visual Odometry with Trajectory Correction Based on Kalman Filter. 

Abstract. This paper proposes a Kalman-filter-based method for camera trajectory 
correction in monocular visual odometry. The approach resolves the scale ambiguity not by 
reconstructing the 3D structure of the scene, but by sequentially using relative displacements 
between the current and several previous camera positions. This mechanism reduces reliance 
on long-term tracking of the same keypoints and makes the method applicable under limited 
parallax, repetitive textures, and partial occlusions. However, this formulation increases the 
method’s sensitivity to noise. To compensate for this drawback, a Kalman filter is employed, 
which prevents error accumulation during consecutive estimates, ensures correct operation 
even in the absence of information about camera motion, and allows measurement quality and 
reliability to be taken into account. A state model and an observation model are proposed, 
which allow for refining the camera pose using only data from consecutive observations. The 
state is represented as a sliding window comprising the current and several preceding camera 
poses, while the observations are constructed from directions of relative displacements 
estimated from an image pair or a short set of frames, without reconstructing the three-
dimensional structure of the scene. Unlike common Multi-State Constraint Kalman Filters 
(MSCKF), which typically integrate inertial measurements, the proposed method relies 
exclusively on information extracted from the image sequence. The effectiveness of the 
proposed method is confirmed with synthetic data in various motion scenarios. 

Keywords: visual odometry, Kalman filter, monocular vision, position estimation, robotics. 
 

References 
1. Neyestani A., Picariello F., Ahmed I., Daponte P., De Vito L. From pixels to 

precision: A survey of monocular visual odometry in digital twin applications. 
Sensors. 2024. vol. 24. no. 4.   

2. Yuan S., Zhang J., Lin Y., Yang L. Hybrid self-supervised monocular visual odometry 
system based on spatio-temporal features. Electronic Research Archive. 2024. vol. 32. 
no. 5. pp. 3543–3568.  

3. Scaramuzza D., Fraundorfer F. Visual odometry [tutorial]. IEEE Robotics & 
Automation Magazine. 2011. vol. 18. no. 4. p. 80–92.  

4. Ou Y., Cai Y., Sun Y., Qin T. Autonomous navigation by mobile robot with sensor 
fusion based on deep reinforcement learning. Sensors. 2024. vol. 24. no. 12.   

5. Lebedev A.O., Vasil'ev V.V., Paulish A.G. [Algorithm for UAV flight controlling 
along a railway using technical vision]. Komp'juternaja optika – Computer Optics. 
2025. vol. 49. no. 2. pp. 320–326. DOI: 10.18287/2412-6179-CO-1532. (In Russ.).  

6. Belkin I.V., Abramenko A.A., Bezuglyi V.D., Yudin D.A. Localization of mobile 
robot in prior 3D LiDAR maps using stereo image sequence. Computer Optics. 2024. 
vol. 48. no. 3. pp. 406–417.  

7. Gorbachev V.A., Kalugin V.F. [Development of a multi-object tracking algorithm with 
untrained features of object matching]. Komp'juternaja optika – Computer Optics. 2023. 
vol. 47. no. 6. pp. 1002–1010. DOI: 10.18287/2412-6179-CO-1275. (In Russ.).  

8. Ljahov P.A., Orazaev A.R. [Analysis of video data from an unmanned aerial vehicle 
based on a structural similarity index]. Komp'juternaja optika – Computer Optics. 
2025. vol. 49. no. 4. pp. 624–633. DOI: 10.18287/2412-6179-CO-1569. (In Russ.).  

1585

____________________________________________________________________MATHEMATICAL MODELING AND APPLIED MATHEMATICS

Informatics and Automation. 2025. Vol. 24 No. 6. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru



9. Jiang S., Jiang C., Jiang W. Efficient structure from motion for large-scale UAV 
images: A review and a comparison of SfM tools. ISPRS Journal of Photogrammetry 
and Remote Sensing. 2020. vol. 167. pp. 230–251.  

10. Le V.H. Visual SLAM and Visual Odometry Based on RGB-D Images Using Deep 
Learning: A Survey. Journal of Robotics and Control (JRC). 2024. vol. 5. no. 4. 
pp. 1050–1079.  

11. Yan F., Li Z., Zhou Z. Robust and efficient edge-based visual odometry. 
Computational Visual Media. 2022. vol. 8. no. 3. pp. 467–481.  

12. Weber S., Demmel N., Chan T.C., Cremers D. Power bundle adjustment for large-
scale 3D reconstruction. Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR). 2023. pp. 281–289.  

13. Triggs B., McLauchlan P., Hartley R., Fitzgibbon A. Bundle adjustment – A modern 
synthesis. Vision Algorithms: Theory and Practice. Lecture Notes in Computer 
Science. 2000. vol. 1883. pp. 298–372. DOI: 10.1007/3-540-44480-7_21.  

14. Soifer V.A., Fursov V.A., Kharitonov S.I. [Kalman filtering of one class of dynamic 
object images]. Informatics and Automation. 2024. vol. 23. no. 4. pp. 953–968. 
DOI: 10.15622/ia.23.4.1. (In Russ.).  

15. Tavares Jr A.J.A., Oliveira N.M.F. A Novel Approach for Kalman Filter Tuning for 
Direct and Indirect Inertial Navigation System/Global Navigation Satellite System 
Integration. Sensors. 2024. vol. 24. no. 22. DOI: 10.3390/s24227331.  

16. Yuan Y., Li F., Chen J., Wang Y., Liu K. An improved Kalman filter algorithm for 
tightly GNSS/INS integrated navigation system. Mathematical Biosciences and 
Engineering. 2024. vol. 21. pp. 963–983.  

17. Wang Z., Pang B., Song Y., Yuan X., Xu Q., Li Y. Robust visual-inertial odometry 
based on a Kalman filter and factor graph. IEEE Transactions on Intelligent 
Transportation Systems. 2023. vol. 24. no. 7. pp. 7048–7060.  

18. Nguyen K.D., Tran D.T., Nguyen D.T., Inoue K., Lee J.H., Nguyen A.Q. Learning 
Visual-Inertial Odometry with Robocentric Iterated Extended Kalman Filter. IEEE 
Access. 2024. vol. 12. pp. 109943–109956.  

19. Lee D., Jung M., Yang W., Kim A. Lidar odometry survey: recent advancements and 
remaining challenges. Intelligent Service Robotics. 2024. vol. 17. no. 2. pp. 95–118.  

20. Xue C., Huang Y., Zhao C., Li X., Mihaylova L., Li Y., Chambers J.A. A Gaussian-
generalized-inverse-Gaussian joint-distribution-based adaptive MSCKF for visual-
inertial odometry navigation. IEEE Transactions on Aerospace and Electronic 
Systems. 2022. vol. 59. no. 3. pp. 2307–2328.  

21. Fischler M.A., Bolles R.C. Random sample consensus: a paradigm for model fitting 
with applications to image analysis and automated cartography. Communications of 
the ACM. 1981. vol. 24. no. 6. pp. 381–395. 

 
Soifer Victor — Ph.D., Dr.Sci., Professor, Academician of the RAS, Recipient of the Russian 
Federation State Prize in science and technology, President, Samara National Research 
University. Research interests: computer optics, image processing, pattern recognition. The 
number of publications — 871. soifer@ssau.ru; 34, Moscow Hwy, 443086, Samara, Russia; 
office phone: +7(846)332-2604. 
 
Goshin Yegor — Ph.D., Associate Professor, Head of the department, Department of 
cyberphotonics, Samara National Research University. Research interests: image processing. 
The number of publications — 78. goshine@ssau.ru; 151, Molodogvardeyskaya St., 443001, 
Samara, Russia; office phone: +7(846)332-2606. 
 
Acknowledgements. The research was carried out within the state assignment theme FSSS-
2023-0006. 

1586

____________________________________________________________________МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРИКЛАДНАЯ МАТЕМАТИКА

Информатика и автоматизация. 2025. Том 24 № 6. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru




