DOI 10.15622/ia.25.1.8

I. FILIANIN, A. KAPITONOV, A. TIMOSHCHUK- BONDAR
RESEARCH ON REINFORCEMENT LEARNING ALGORITHMS
FOR NETWORK LATENCY REDUCTION IN EDGE COMPUTING

Filianin 1., Kapitonov A., Timoshchuk-Bondar A. Research on Reinforcement Learning
Algorithms for Network Latency Reduction in Edge Computing.

Abstract. Current research on decision-making algorithms in multi-access edge computing
(MEC) for resource allocation often relies on simplified network topology abstractions, which
limits the applicability of the results in real-world mobile network operations. This work
aims to develop a realistic cellular network model using stochastic geometry methods and to
comprehensively evaluate the effectiveness of modern reinforcement learning algorithms in
minimizing network latency in edge computing. To create a mathematically sound model of the
network environment, we used stochastic geometry methods combined with real statistical data
on cellular user distribution. Applying stochastic geometry ensured accurate modeling of the
spatial placement of base stations and the calculation of inter-node distances, which are critically
important for determining network latency. Experimental evaluation was conducted on a refined
Lightweight MEC Platform Simulator (LWMECPS) platform with an extended Gymnasium
API, supporting Proximal Policy Optimization (PPO), Twin Delayed Deep Deterministic Policy
Gradient (TD3), and Soft Actor-Critic (SAC) algorithms. We developed a communication network
model that considers the realistic spatial distribution of network elements and the temporal
dynamics of user load. Based on this model, a virtualized test environment was created in
LWMECPS, allowing for reproducible experiments with controllable parameters. Experimental
results revealed distinct performance characteristics across the algorithms: PPO achieved a
consistent latency reduction of up to 20% with stable convergence; SAC demonstrated the
highest absolute improvement (a latency reduction of 38%) but exhibited initialization instability;
TD3 showed moderate effectiveness (an improvement of up to 11%) but high sensitivity to
hyperparameter tuning. The comparative analysis of reinforcement learning algorithms revealed
key features of their application in MEC systems. The discrete nature of service placement tasks
makes PPO the most suitable for practical implementation due to its convergence stability and
natural support for discrete action spaces, despite SAC achieving higher peak performance. While
SAC'’s superior absolute results are promising, its initialization challenges and original design for
continuous action spaces require additional consideration for MEC deployment. The obtained
results provide scientifically sound recommendations for MEC platform developers regarding the
selection of optimal algorithmic solutions based on specific system requirements and constraints.

Keywords: reinforcement learning, multi-access edge computing (MEC), proximal policy
optimization (PPO), soft actor-critic (SAC), twin delayed deep deterministic policy gradient
(TD3), LWMECPS, Weights & Biases (WandB).

1. Introduction. Mobile Edge Computing (MEC) represents a
distributed computing paradigm that brings data processing and service
provision closer to end users, thereby minimizing data transmission delays
and reducing the load on central cloud infrastructures [1]. The task of placing
computing services in an MEC environment is a multi-criteria optimization
problem, whose main objectives are:

— minimization of network latency [2];

— optimization of computational and network resource utilization [3];

— adaptation to data consumption conditions [4];

— energy efficiency [5].

In the first half of 2025, approximately 3,850 scientific articles indexed
in Google Scholar discussed algorithms used in decision-making systems
for MEC platforms. The core of these decision-making systems for placing
computing services in MEC platforms, thus enabling data processing closer to
end users, relies on various methods that can be broadly categorized as follows:

— optimization algorithms — they include exact and approximate
methods for finding the best solutions in the service placement space;

— reinforcement learning algorithms — used for adaptive selection of
placement strategies in dynamically changing environment conditions;

— statistical and heuristic methods — covering a wide range of
approaches, including greedy algorithms, dynamic programming methods,
and other heuristics that ensure acceptable solution quality with limited
computational resources.

The choice of a specific decision-making method depends on the
network representation model with MEC architecture. For instance, in the
article [6], the communication network is presented in a simplified form as a
set of computing nodes and tasks, without considering network parameters
and inter-service interactions.

Meanwhile, the works [7] demonstrate the importance of considering
multipath transmissions and traffic management in switching nodes to ensure
timely packet delivery, which is critically important for minimizing latency in
MEC systems.

The article [8] addresses the issue of determining the optimal placement
of optical fiber for wave division multiplexing and passive optical network
technologies, which enables the reduction of network latency and raises
particular questions about the technology’s practical applicability.

The article [9] represents the communication network as an RAN
cascaded with a computer-server network, with stochastic geometry methods to
calculate user and tower placement, which enables the calculation of the Signal-
to-Interference Ratio (SIR) and most network communication abstractions.

After analyzing the articles, we can conclude that most of them attempt
to represent the communication network mathematically. However, it is worth
noting that the radio channel can use various communication standards, such
as 4G, 5G, and subsequent generations. These standards, despite their general
conceptual direction, are not interchangeable. Furthermore, the implementation
of standards varies significantly depending on the equipment manufacturer.
Even within the same manufacturer and device series, different hardware

platforms and specialized software can be used, which directly affects the
characteristics of data transmission and processing in an MEC system. This, in
turn, can significantly impact the quality of decisions made in MEC platforms.

The key optimization criteria when placing computing services are:

— minimizing network latency;

— reducing the cost of deploying and operating services (FinOps
approaches);

— reducing the carbon footprint;

— improving user perception of quality of experience (QoE).

These criteria correlate with the parameters used to evaluate the
effectiveness of the computational approaches discussed earlier. The scientific
literature contains many works aimed at optimizing each of these criteria
individually or in combination.

The purpose of this work was to develop a system for training and
testing reinforcement learning algorithms in tasks of reducing the average
network latency under conditions similar to real-world scenarios.

The objectives defined within this work are as follows:

— analyze the literature and select reinforcement learning algorithms
for the decision-making system;

— refine LWMECPS with a gymnasium capability API to support new
reinforcement learning algorithms;

— develop a test application that can generate loads based on specified
parameters to conduct an experiment;

— conduct an experiment and evaluate reinforcement learning
algorithms in a system that approximates a real-world environment.

As aresult of this work, we obtained data on the influence of the network
model on the performance of reinforcement learning algorithms in the task of
placing computing services while reducing the average network latency.

2. Literature Review. The use of reinforcement learning algorithms in
decision-making tasks for placing computing services is very popular. However,
there are also algorithmic solutions, such as the Lyapunov function discussed
in the article [10].

The problem with algorithmic solutions [11] is their strict dependence
on the network model, which is rather difficult to describe in the context of
real-world communication networks. The advantage of reinforcement learning
algorithms is their independence from a specific network model, which can, in
turn, accelerate the process of implementing decision-making systems in real
cellular networks.

Developing solutions based on RL algorithms is accompanied by
difficulties in organizing the test environment used for training models and

prototyping specific solutions [12]. Previously, as a solution to this problem, a
Gymnasium capability API interface was developed within the LightWeight
Multi Access Edge Computing Platform Simulator, allowing for the rapid
organization of an interface for interaction with the target system [13].

Unfortunately, it only supported Q-Network and Deep Q-Network
algorithms in a limited representation. Recently, several new reinforcement
learning algorithms have emerged that can improve the quality of decisions
made.

In particular, new-generation algorithms such as Proximal Policy
Optimization (PPO), Soft Actor-Critic (SAC), and Twin Delayed Deep
Deterministic Policy Gradient (TD3) address specific problems of dynamic
MEC environments and offer significant improvements over traditional
Q-learning-based approaches.

These algorithms were developed with the unique characteristics of
resource management tasks in edge computing in mind: high variability of
environment states, the need for continuous learning under changing load
patterns, and requirements for the stability and predictability of decisions when
deployed in real-world operations.

Each algorithm is examined below.

The SAC algorithm is an off-policy actor-critic method with an entropy
regularizer that trains a stochastic policy, automatically balancing between
optimal convergence and exploration of the action space [14]. A key feature
of SAC is the inclusion of an entropy term in the objective function, which
promotes diversity in action selection and prevents premature convergence
to suboptimal solutions. This approach ensures the most stable convergence
under noisy reward signals, which is typical for real MEC systems.

In the context of service placement tasks, SAC demonstrates an ability
to discover rare and non-standard placement solutions due to its tendency to
explore unusual actions. It is especially valuable in scenarios where clusters of
edge nodes are subject to abrupt changes, for example, during traffic spikes,
unexpected resource constraints on nodes, or sudden equipment failures. The
stochastic nature of the SAC policy enables the system to adapt to unforeseen
situations by identifying alternative service placement paths overlooked by
deterministic approaches.

The TD3 algorithm is an improved version of the DDPG algorithm —
an off-policy deterministic actor-critic method. It includes three key
improvements aimed at increasing training stability and the quality of
the resulting solutions [15]: the first improvement is the use of two Q-
networks («twin» Q-networks), which helps to mitigate the problem of
overestimating action values typical of critic-based methods; the second

improvement is delayed actor updates performed less frequently than critic
updates, contributing to greater stability in the training process; the third
improvement’target policy smoothing — adds controlled noise to the actions of
the target policy, thereby reducing overfitting to noise in the data.

A special feature of TD3 is its efficient use of samples from the
experience buffer, which makes the algorithm economical in terms of data
requirements. In MEC tasks, this property manifests itself in high resilience
to noise in performance metrics and network parameters. TD3 is particularly
well-suited for fine-tuning continuous placement parameters, such as CPU
allocation, RAM allocation, and CPU affinity settings, which require precise
control over continuous actions without sharp fluctuations in strategy.

The PPO algorithm is an on-policy method that features a «clipping»
mechanism to constrain policy updates, preventing radical changes in strategy
in a single training step [16]. This ensures a monotonic improvement in
performance and high stability in the training process. The algorithm is known
for its simple hyperparameter tuning and very rarely exhibits catastrophic
training failures («gradient explosions» or sharp degradations in policy quality).

Although PPO requires more data for training compared to off-policy
methods, it provides a highly predictable training dynamic and is well-suited
for parallelization, which makes it attractive for large-scale MEC deployments.
In the context of service placement, a key advantage of PPO is its «gentle»
policy update, which protects against sudden degradations in service level
objectives (SLOs) when deploying a model in an online environment. While
other algorithms might show significant performance drops during fine-tuning
or adaptation to new conditions, PPO ensures smooth transitions and stable
maintenance of service quality.

Based on this analysis, traditional Q-learning and DQN methods
demonstrate significant limitations in the context of MEC systems. Q-learning
is effective only for environments with a small and finite number of states, but
it struggles with large or continuous state spaces. Meanwhile, DQN suffers
from overestimation problems and exhibits unstable convergence [17].

A fundamental drawback of these approaches is their inability to
effectively handle continuous space, which is critical for precise resource
management in edge computing. Modern algorithms, including SAC, TD3, and
PPO, overcome these limitations, providing more stable training and efficient
performance in the high-dimensional continuous state and action spaces typical
of MEC environments.

3. Decision-Making Methods for Reducing Network Latency in
Edge Computing. In the context of edge computing, as previously mentioned,
the decision of where to place computing services is a multidimensional

optimization task that requires accounting for many interconnected factors of
the network infrastructure. As shown in previous sections, existing approaches
to modeling MEC environments often use simplified abstractions of network
topology, which limits the applicability of the results in real-world operational
conditions.

A key problem in current research is the insufficiently accurate
representation of the spatial distribution of network infrastructure elements
and the dynamics of user load. The use of stochastic geometry methods
is necessary to define a model for the physical location of cellular towers
and to determine the distance between them, which is critical for accurately
calculating network latencies and radio signal quality.

Traditional approaches to modeling MEC environments rely on
deterministic topologies or overly simplistic probabilistic models that do not
reflect the real complexity of modern cellular networks. All this leads to
the generation of training data that can differ significantly from real-world
conditions, which, in turn, reduces the quality of trained RL models deployed
in a production environment.

This section presents an approach to creating a more realistic MEC
environment model based on integrating stochastic geometry methods with
a practical simulation platform. We hypothesize that the use of stochastic
geometry methods to calculate the UE per BS distribution in combination with
arealistic LWMECPS environment based on Minikube will improve the quality
of RL algorithm training by providing higher-quality data.

The proposed approach aims to overcome the limitations of existing
methods by creating a hybrid model that combines the mathematical rigor of
stochastic modeling with the practical applicability of containerized computing
environments. This allows for the creation of a test environment that maintains
the controllability and reproducibility of experiments while ensuring a high
degree of correspondence to the real-world operating conditions of MEC
systems.

We can represent the environment under investigation in a general form
as:

State, = {Nodet1 7Node,z, ...,Node!, Deployment! AvgLatency}, (1)

where

Node! = {CPU/ , RAM!, TX! RX]}, i=1,2,3,...,n,)

Deployment! = {CPU _usage',
RAM _usagei ,
TX _usagei, 3)
RX _usagef ,
Replicas!},

then we can represent the action as
Action; = {Replicas! ,Replicas’,... Replicas'}, i=1,2,3,....n, (4)

where
Replicas! € [0, Rmax], 5)
and Ry is the maximum number of replicas per deployment.

(6)

Imbalance, =

The following section examines each machine learning algorithm

individually.

To describe Proximal Policy Optimization for network latency reduction
tasks, we can represent the system state at discrete time pointst =0, 1,...,T
as:

S = {Node,<1>, . 7Node,(n>7

(1)

Deployment; . .. ,Deployment,(") , (7N

AvgLatency; } ,

where

Node? = (CPUt(i),RAMfi),TX,<i),RX,(i)), ®)

are the remaining resources of the i-th node;

Deployment,(i> = (CPU _usagefi),RAM_usagez(i)v

TX _usage,(i) ,RX _usaget(i)) ©)

Replicas§i>> ,

and AvgLatency, is the moving average of the response latency.
Agent’s action:

a = (Replicast(l),...7Replicast(”)>, Replicast(i) €{0,...,Rmax}. (10)

It is a multimodal discrete value (Multi-Discrete action space) that
determines the new number of replicas for each deployment, while the reward
function linearly combines metrics:

n .
R; = —oAvgLatency; — ZZReplicas,(l>
i=1
—-v Z Imbalancet(r), 1)
re{CPU,RAM,TX RX}

where o, B, ¥ > 0 are the weights chosen empirically for the target «quality/cost»
ratio.
An agent in PPO learns to find a stochastic policy as follows:

7o (a|sy) = H néi> (Replicas,w |s¢). (12)
i—1

1

This is parameterized by a «shared neural network head» 6.
Factorization by i simplifies the approximation of an enormous action space
(Rmax +1)". The state is evaluated by a critic Vj (s;) with parameters ¢.

After collecting a batch of trajectories of length 7', we fix the old policy

Tg,,, and calculate the probability ratio:
T
n(e) = o) (13)
76,4 (a1s1)

For a more stable gradient step, a clipped surrogate objective is used:
Laip(8) =B, [min (r:(0)A,,clip(r(8),1 — e, 1+ €)A,)], (14

where € € [0.1,0.3] is a hyperparameter and A, is an advantage estimate.
We also use a generalized advantage estimate (GAE-A):

T—t—-1

A=Y (YA Rk + Welsirirn) = Vo(sir)) (15)
k=

(=]

with discounting y € (0, 1) and a smoothing parameter A € [0, 1].

The overall loss function, which is optimized using the stochastic
gradient method, also includes the critic’s loss and an entropy regularization
term:

L(6,0) = —~Laiip(8) + ol [(Vo(s1) = R)*] — sy [(mo (-]s1))], (16)

where

T—t—1

Ri= Y YR (17)
k=0

J is the policy entropy, and c,, c; > 0 are coeflicients.

The condition «node resources are not exceeded» (CPU _usagef’) <
CPU,(i), etc.) is implemented through masking. Forbidden components A,(i)
are assigned a zero probability before sampling, which ensures the correctness
of r;(0). This strategy is compatible with the PPO formulation and does not
violate the requirements of a monotonic policy. Algorithm 1 displays the

sequence of actions for PPO training.

Algorithm 1. Proximal Policy Optimization (PPO) with Clipped Objective

1: Input: Initial policy parameters 0, value function parameters ¢; clipping threshold
€; number of epochs K; mini-batch size B; horizon T'; learning rates ng, Ury
discount factor y; GAE parameter A

2: while not converged do

3: Collect trajectories {(s;,ar,rs,5,+1)} for T timesteps using current policy g

Compute advantage estimates A, using GAE:

&

O =11+ YWp (s1) — Vo (1), Z YA)' 811

Compute empirical returns: R, = A; + Vo (s1)

Compute old log probabilities: log 7rg (ar|s;)

for k=1to K do > Number of policy updates per batch
Sample mini-batch of size B from collected data
Compute probability ratio:

0 AW

mg(ay|st)
Tg, (at|st)

r(0) =
10: Compute clipped surrogate objective:
5P — 1, [min (r;(0)A,, clip(r(0),1 —€,1+¢€)A,)]
11: Update policy parameters:
6« 0 +ngVe.LsHP

12: Update value function by minimizing:
- 512
L(9) =By [(V(s1) ~ R)’]

¢ ¢—1MpVyLy(9)
13: end for
14: end while
15: Output: Optimized policy parameters 0

The Soft Actor-Critic algorithm is adapted for discrete multi-action
environments in network resource allocation tasks. The policy 7o (a; | ;)
is parameterized by a neural network O that outputs action logits for each
deployment dimension. The factorization by i simplifies the approximation of
an enormous action space (Rmax + 1)".

The state is evaluated by two critic networks Vj, (s;) and Vy, (s;) with
parameters ¢; and ¢,, where the minimum Q-value is used for stability.

Actor-Critic Architecture we can represent like this:

— Actor Network: Outputs logits for categorical distribution over
replica counts [0, Ryax| for each deployment;

— Critic Network: Two Q-networks that estimate Q(s;,a,) for state-
action pairs;

— Target Network: Soft updates with parameter 7 for critic target
networks.

Critic Update: Minimize the Bellman error with entropy regularization:

Leriic =E [(Q(Stvat) - (rf +’}/(mian(sl+1 7al+1) - (XlOgTE(at+1 | sl‘Jrl))))z} :

Actor Update: Maximize expected reward plus entropy:

Lacior = E[atlog m(a; | s¢) —min(Qi (s;,a:), Q2 (ss,ar))] -

Temperature Update: Automatic entropy tuning:

Lo =E [—alogir(a, | s¢) — aHtarget] .

Algorithm 2 displays the sequence of actions for SAC training. The
Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm is adapted
for discrete multi-action environments in network resource allocation tasks.

The policy mg(a; | s;) is parameterized by a neural network 6
that outputs discrete action indices for each deployment dimension. The
factorization by i simplifies the approximation of an enormous action space
(Rmax + 1)

The state is evaluated by two critic networks Vj, (s;) and Vi, (s;)
with parameters ¢; and ¢, where the minimum Q-value is used to reduce
overestimation bias.

Algorithm 2. Soft Actor-Critic (SAC)

1: Input: Policy parameters 6, critic parameters ¢, ¢», target networks @; < ¢y,
¢ <+ ¢, temperature coefficient o, discount factor 7, target smoothing coefficient
7, learning rates g, Nz, Na, experience replay buffer 2

: while not converged do

Collect transitions (s;,ay,rs, ;1 1) by interacting with the environment using
policy gy (als)

w N

4: Store transitions in replay buffer: 2 < 2 U{(s¢,ar,r¢,5041)}
5: for all mini-batches sampled from & do
6: Sample next action a,11 ~ Ty (-|s;+1)
7: Compute target Q-value:
yi=ri+y (g{g O, (s1+1,a141) — 0tlog g (ar+1 [s;+1))
8: Update each critic by minimizing the loss:
2.
9i < 6 =MV, (Qo(sr.a) —yr)", i=12
9: Update the policy parameters via:
0+ 06— nnVBEuan's (XlOg Ty (at ‘S;) - Inlll’l Q(D,‘ (Slvaf)
10: If using adaptive temperature, update o:
o a—NgValiyx, [—0 (logmg(a|si) + Harger)|
11: Update target networks:

(]3,' — 1o+ (1 —r)éi, i=1,2

12: end for
13: end while
14: Output: Learned parameters 0, ¢, ¢, and &

Actor-Critic Architecture:

— Actor Network: Outputs discrete action indices via argmax over
replica counts [0, Rp,x] for each deployment;

— Critic Networks: Two Q-networks that estimate Q(s;,a,) for state-
action pairs;

— Target Networks: Soft updates with parameter 7 for all target
networks;

— Critic Update: Minimize the Bellman error using twin critics:

O (51, (1))
Lcritic:fE <Q(s,,a,)—(r,+}/min(/lStJrl’ S ,))> ‘|;

Qz(stﬂ’”/(stﬂ))

— Actor Update: Maximize Q-value with policy delay:

Lactor = E [_Ql (1, ﬂ(sl))} :

The standard TD3 algorithm has been adapted for discrete action
spaces by:

— converting discrete action indices to float for critic networks;

— removing target policy smoothing (not applicable to discrete actions);
using arg max for action selection instead of continuous outputs;

— adding exploration noise through discrete action perturbation.

Algorithm 3 displays the sequence of actions for TD3 training. Based
on the mathematical formulations presented above, the PPO, SAC, and TD3
algorithms were implemented for network latency reduction in Mobile Edge
Computing (MEC) environments.

The three algorithms demonstrate distinct characteristics in their
approach to policy optimization. PPO employs a clipped surrogate objective
with generalized advantage estimation, ensuring stable policy updates. SAC
utilizes entropy regularization with automatic temperature tuning to balance
exploration and exploitation. TD3 implements twin critics with policy delay
mechanisms to reduce overestimation bias and enhance training stability.

In environments with extensive discrete action spaces, methods based
on value function learning (such as Q-learning and its modifications) are
subject to fundamental scalability limitations. The computational complexity
of Q-value updates increases linearly with the size of the action space, while
maximization bias increases proportionally to the logarithm of the number of
alternatives. Traditional exploration strategies, such as the €-greedy approach
and Boltzmann policies, become exponentially less efficient as the cardinality
of the action space increases. This results in slower convergence and greater
variance in estimates.

Actor-critic methods (Proximal Policy Optimization, Soft Actor-Critic
and Twin Delayed Deep Deterministic Policy Gradient) offer architectural
solutions to these issues. Direct parametric policy learning eliminates the
need to accurately approximate value functions for the entire action space,
allowing computational resources to be concentrated on statistically significant
regions. Regularization mechanisms — KL divergence in PPO, entropy

constraints in SAC and ensemble critics in TD3 — stabilize learning and
mitigate overestimation artifacts. Integrated stochastic exploration strategies
implemented through entropy bonuses, stochastic policy parameterization
and noise perturbations support effective exploration given the combinatorial
complexity of the action space.

Algorithm 3. Twin Delayed Deep Deterministic Policy Gradient (TD3)

1: Input: Initial actor parameters 0, critic parameters ¢, ¢,, target networks

66, @101, <

exploration noise .4"; target smoothing noise scale o; policy update delay d;
learning rates 7)o, Nz; target update rate 7; discount factor y; replay buffer 7

2: while not converged do

3 Collect action with exploration: a; = mg(sy) +

4: Execute a;, observe r, s;41

5 Store transition (s¢,ar,7t,5;41) in buffer 2

6 for all mini-batches sampled from % do

7 Add clipped noise: @41 = m5(s;+1) + €, where € ~ 4(0,0), clipped to

[—¢,d]
8: Compute target Q-value:
Yi=ri+ymin O, ($141,d141)
9: Update critics:
¢ < 0i — MoV, (g, (s1,ar) —Yr)z , =12
10: if iteration % d == 0 then
11: Update actor (policy gradient):
0 < 0 —NzVeQy, (¢, 70 (5¢))
12: Update target networks:
P19+ (1-17)¢;, 6 710+(1-17)6
13: end if

14: end for
15: end while
16: Output: Trained actor 0 and critics @1, ¢»

These reinforcement learning approaches provide a comprehensive
framework for adaptive resource management in dynamic MEC environments,

enabling intelligent decision-making for replica allocation that directly impacts
network performance and user experience.

4. Limitations. The model considered in this study has certain
limitations related to the challenges of emulating processes within a
communication network, and these must be taken into account.

For instance, we opted for a uniform distribution with a latency of 10
ms. While this decision may raise questions, there is an explanation. Currently,
the absence of straightforward traffic balancing tools within the LWMECPS
network hinders the implementation of transitive latencies.

Since their spatial locations are known, we could of course determine
the distance between nodes and use simple formulas to calculate the latency
between them. However, we must remember that traffic within the network
will follow a path formed by an IGP protocol, such as OSPF, EIGRP or IS-IS.

Simultaneously, we utilize the distribution of users in time and space,
enabling us to influence network latency by adjusting the load on UEs.

Furthermore, solutions based on SDN, IPIP tunnels and network slicing
allow for flexible traffic management. However, these are difficult to account for
in all use cases. Therefore, for now, we have decided to use linearly increasing
latencies, but we could calculate them more accurately in the future.

5. Development of a System for Evaluating RL Algorithms in
Network Latency Reduction Tasks. To practically verify the proposed
hypotheses and obtain quantitative estimates of the effectiveness of modern RL
algorithms in service placement tasks, it is necessary to create a comprehensive
experimental environment.

Such an environment must not only ensure a correct simulation of
network conditions approximated to real-world scenarios but also provide tools
for a systematic comparison of different decision-making approaches in MEC
systems.

Therefore, to organize an experiment that would allow us to test our
hypothesis, it was necessary to refine the previously discussed LWMECPS
system [13] and develop a test application that could emulate network activity
and measure the latency between nodes, with support for experiments and
network activity distribution.

We can highlight the following requirements for refining LWMECPS-
GYM:

— add support for PPO, SAC, and TD3 RL algorithms;

— add the ability to create experiments with specific parameters for the
corresponding machine learning algorithms;

— add the ability to collect data on average latency from the LWMECPS-
testapp-client by group_id;

— add the ability to save machine learning models, logs, and metrics to
the WandB machine learning model storage system.

In addition, the lwmecps-testapp test application had to meet the
following requirements:

— ability to configure load parameters;

— support for mechanisms to measure and log performance metrics;

— ability to emulate various user behavior scenarios.

The lwmecps-testapp test application is a distributed system
designed to investigate the effectiveness of reinforcement learning algorithms
when optimizing network latencies in edge computing.

Based on a microservice approach, the system’s architecture includes
three main components: a client application, a server application, and a data
management system based on MongoDB.

The lwmecps-testapp-client service is implemented using the
FastAPI framework and performs the functions of a load generator and an
experiment coordinator. The main functional module includes managing the
experiment lifecycle, generating a controlled load, and collecting performance
metrics.

The experiment management system enables the creation, initialization,
and control of experiment states through REST API endpoints. Each experiment
features a set of parameters, including the configuration of target servers, load
profiles, and time constraints. Load profiles consist of three parameters (N,
T, D), where N is the number of concurrent users, T represents the interval
between requests, and D denotes the profile duration.

The load generation module implements an asynchronous architecture
using asyncio, ensuring high throughput with minimal resource consumption.
The system supports up to 100 concurrent tasks with configurable connection
timeouts. The latency measurement algorithm includes host prioritization and
automatic failover in case of node failure.

The lwmecps-testapp-server service emulates the behavior of edge
computing nodes under variable load. The server architecture consists of a
request processing module, a resource emulation system, and metric export.

The main endpoint /api/latency provides latency measurement with
a realistic modeling of edge node behavior. The resource emulation system
implements synthetic modeling of CPU and RAM usage with configurable
resource limits.

Figure 1 shows the architecture of the LWMECPS test setup.
LitmusChaos, as discussed in previous articles, is also used as a system for
introducing latency.

LWMECPS
Node 1 Node N
LWMECPS LWMECPS
Testapp o Testapp |[€—
Server-1 Server-N
1 . 1
LitmusChaos LitmusChaos
Latency L4 Latency
HCPP Create Exp LWMECPS T f
Dataset > Testapp
Client
E fi Late IUE it Acti
xp Configs atency/UE Counts »| LWMECPS-GYM ction
MongoDB -Gym Configs

Fig. 1. Architecture of the LWMECPS test setup

As initial data, the user distribution from article [18] was taken and
processed through the Hard-Core Poisson Process (HCPP) algorithm to
determine the distribution of users per BS, based on the method discussed
in [19].

Using the distribution data of BSs and UEs per DB, we formed a user
distribution throughout the day based on the previously discussed statistics
and created a graph from 00:00 to 23:59 with a 10-second step, as shown in
Figure 2 [20].

Number of Users per Base Station Over Time (HCPP)

35

2 o 8

Number of Users
=
o}

10

0 20000 40000 60000 80000
Time (seconds)

Fig. 2. Distribution diagram of UEs per BS during 1 day

This distribution enables more accurate training of the RL model,
allowing it to account for the non-uniform usage of communication networks
depending on time. The generated distribution promoted the preparation
of experiments for each lwmecps-testapp-server deployed on the
LWMECPS nodes.

Figure 3 shows the architecture of the lwmecps-testapp for
experiment 1, from the perspective of the communication network and the
introduced latencies.

Minikube Minikube-m02 Minikube-m03 Minikube-m04

testapp-server-bs1. testapp-server-bs2. testapp testapp: ver-bs4.
Iwmecps-testapp Iwmecps-testapp Iwmecps-testapp Iwmecps-testapp

+10ms +20ms +30ms +40ms

ver-bs3.

Iwmecps-testapp-
client

Fig. 3. lwmecps-testapp architecture for experiment 1

‘We must note the problem of transitive latencies. At this stage, it is not
possible to implement transitive latencies due to the complexities of modeling
traffic flow. However, this problem has the following solution.

The experiment involves 4 BSs, with identifiers bs_1, ..., bs_4. Each
bs_n has a unique load profile and host list. The 1wmecps-testapp-client
algorithm works as follows: if the first lwumecps-testapp-server endpoint
in the queue is unavailable, it will try the next one. Thus, the location of
computing services dynamically changes, and client traffic will flow.

To train the reinforcement learning algorithms, we prepared two network
load profiles: from 0 to 21600 seconds (6 hours) and from 0 to 86400 seconds
(24 hours). All the RL algorithms were trained on each network load profile
for the corresponding duration, allowing us to test not only the quality of the
algorithms against each other but also the influence of changing network load
over time on the quality of decisions made.

To evaluate the quality of decisions made to reduce network latency, six
verification experiments were prepared, each running for 100 episodes. This
approach enabled the evaluation of six machine learning models based on three
algorithms, all of them trained for 6 and 24 hours.

Figures 4, 5, and 6 show the results of network latency optimization by
the PPO, SAC, and TD3 algorithms for models trained for 6 and 24 hours.

= 24-hour trained reconciliation model (FPO) == &-hour trained reconciliation model (FRO)

100
95
90
5
=
o
3 s
80
75
0 20 40 60 80

Steps

Fig. 4. Network latency optimization graph by PPO algorithm for 6 and 24 hour models

== 24-hour trained reconciliation model (TD3) == &-hour trained reconciliation model (TD3)

100
E \/\MM
90
z
=
o
3 s
80
75
0 20 40 60 80

Steps

Fig. 5. Network latency optimization graph by TD3 algorithm for 6 and 24 hour models

== 24-hour trained reconciliation model (SAC) == 6-hour trained reconciliation model (SAC)

140

120

100

Latency

a0

60

Steps

Fig. 6. Network latency optimization graph by SAC algorithm for 6 and 24 hour models

Table 1 shows the numerical results of the comparison of the PPO, SAC,
and TD3 models trained for 6 and 24 hours to assess the impact of training
duration on the quality of decisions made. For comparison, the initial and
final average delay values were taken, as well as their delta in absolute and
percentage terms.

Table 1. Comparison of RL algorithms for 6 and 24 hour training

Algorithm | Initial Latency | Final Latency | Absolute Delta (ms) | Percent Change
PPO6h ~ 90 ms ~ 81 ms -9 -10%
PPO 24 h ~ 96 ms ~ 77 ms -19 -19%
TD36h ~ 94 ms ~ 84 ms -10 -11%
TD3 24 h ~ 95 ms ~ 90 ms -5 -5%
SAC6h ~ 90 ms ~ 79 ms -11 -12%
SAC 24 h ~ 130 ms ~ 80 ms -50 -38%

Based on the analysis of the data in the table, we can draw the following
conclusions.

The PPO algorithm trained for 24 hours shows the best performance in
network latency reduction, lowering it by nearly 20%. According to the graphs,
PPO also has the smoothest trajectory — the latency curve converges to a local
minimum and stabilizes quickly.

The TD3 algorithm shows the best latency reduction among 6-hour
experiments. However, it shows poor results when trained for 24 hours, with
several runs yielding different outcomes. The TD3 algorithm is overly sensitive

to hyperparameters whose influence can significantly alter the experimental
results.

The SAC algorithm demonstrates the most dramatic improvement in the
24-hour training scenario, achieving a 38% latency reduction despite starting
from a higher initial latency (~130 ms). However, the high initial latency
suggests potential initialization or early training instability issues that warrant
further investigation.

Based on the data obtained, we can conclude that the PPO algorithm
is optimal for reducing the average network latency. Unlike robotics or
autonomous vehicle systems, which require the fine-tuning of continuous
parameters like steering angle or engine power, the task of service placement
in an MEC environment is characterized by a discrete action space — selecting
a specific node from an available set to deploy a particular service [21]. The
SAC algorithm was developed for continuous action spaces [22]. Although
modifications exist for discrete tasks [23], they require additional adaptation,
which can negatively affect performance [24].

The discreteness of the action space poses significant challenges for
policy optimization in deep reinforcement learning methods. The inability to
differentiate the argmax operation prevents the use of gradient methods for
direct action optimization. Meanwhile, the discrete redistribution of probability
mass between actions leads to discontinuous changes in policy. These features
exacerbate bootstrap error in critic algorithms and increase sensitivity to
inaccuracies in Q-function estimates for rare actions. They also contribute to
premature policy determination, which leads to the collapse of state and action
space exploration.

We define algorithmic stability as low performance variance across
seeds, absence of policy collapse during extended training, stable value
estimates and gradients, and robustness to moderate distribution shifts.

PPO exhibits sensitivity to prolonged training through on-policy data
reuse. Extended epochs on fixed batches with constant clipping induce batch
overfitting, where surrogate improvements fail to translate to reward gains.
Additionally, entropy decay despite bonuses leads to deterministic policies
with reduced robustness. Our protocol limits epochs to two per batch, monitors
adaptive KL divergence, enforces entropy floors, and employs early stopping
with validation-based checkpoint selection.

SAC’s maximum entropy framework enhances stability by maintaining
state coverage. However, automatic temperature adjustment reduces entropy
over time, causing determinization and robustness loss. Fixed replay buffers
create distribution shifts as aged samples bias Q-functions, while bootstrap
artifacts accumulate over extended horizons. Mitigation strategies include

minimum alpha constraints, critic weight decay, Polyak EMA updates, and
EMA checkpoint preservation.

TD3’s twin critics and target smoothing stabilize early training phases.
Extended training can induce conservative Q-underestimation, freezing
improvement and amplifying noise sensitivity. Suboptimal Polyak coefficients
and update frequencies desynchronize networks, increasing TD-error and
reducing replay diversity. Stability is maintained through careful policy delay
and target noise control.

In contrast, the PPO algorithm naturally supports both discrete and
continuous action spaces, making it more suitable for service placement tasks
without architectural modifications.

Understanding the specifics of MEC platforms, we can assert that the
requirements characteristic of this domain — convergence stability, resilience
to changes in network conditions, and the need to maintain quality of service —
align particularly well with the architectural features of PPO. Unlike studies
in robotics [25] where algorithm comparisons involve tasks with continuous
control, MEC tasks are combinatorial optimization problems with discrete
choices. The observed instability of TD3 in the experiments is also explained
by the fact that this algorithm, like SAC, is optimized for continuous actions,
and its application to discrete tasks can lead to suboptimal behavior.

6. Conclusion. This study conducted a comprehensive analysis of the
effectiveness of modern reinforcement learning algorithms — Proximal Policy
Optimization (PPO), Twin Delayed Deep Deterministic Policy Gradient (TD3),
and Soft Actor-Critic (SAC) — in the task of optimizing service placement to
minimize network latency in edge computing.

To ensure the correctness of the experimental studies, we significantly
refined the LWMECPS platform by upgrading the Gymnasium API interface
to support the investigated machine learning algorithms. Additionally, a
comprehensive test environment, lwmecps-testapp, was developed to
emulate realistic network load scenarios using stochastic geometry methods to
model the spatial distribution of base stations and user devices.

The experimental results demonstrate significant differences in the
effectiveness of the algorithms:

— The PPO algorithm showed the best results, achieving an average
network latency reduction of up to 20% when trained on a 24-hour load profile.
PPO’s key advantages are its high convergence stability, natural support for
discrete action spaces, and resilience to variations in network conditions,
making it the most suitable algorithm for practical application in MEC systems.

— The TD3 algorithm demonstrated moderate effectiveness with a
maximum latency reduction of 11% for a 6-hour training profile. However,

we revealed a critical sensitivity of the algorithm to hyperparameter tuning,
leading to significant variability in results and limiting its practical applicability
without meticulous configuration.

— The SAC algorithm demonstrated mixed results: while achieving
the highest absolute latency reduction (38%) in extended training scenarios,
it exhibited initialization challenges with elevated initial latency values. This
behavior is consistent with SAC’s original design for continuous action spaces,
suggesting that discrete MEC service placement tasks may require additional
algorithmic adaptations for optimal performance.

The results obtained confirm the hypothesis that using more realistic
models of the network environment, based on stochastic geometry methods,
improves the quality of RL algorithm training. This is especially important for
ensuring the applicability of the resulting solutions in real-world MEC system
operations.

Future work should focus on investigating hybrid approaches that
combine the stability of PPO with the exploration capabilities of other
algorithms, as well as validating these findings in real MEC testbed
environments.

References
1. Cruz P., Achir N, Viana A.C. On the edge of the deployment: A survey on multi-

access edge computing. ACM Computing Surveys. 2022. vol. 55. no. 5. pp. 1-34.
DOI: 10.1145/3529758.

2. Yi Y., Zhang G., Jiang H. Mobile Edge Computing Networks: Online Low-Latency and
Fresh Service Provisioning. IEEE Transactions on Communications. 2025.
3. Wang K., Akhtar S.F., Al-Zahrani F.A. An Efficient Algorithm for Resource Allocation

in Mobile Edge Computing Based on Convex Optimization and Karush-Kuhn—Tucker
Method. Complexity. 2023. vol. 2023(1). pp. 1-15. DOI: 10.1155/2023/9604454.

4. Qin Y., Chen J., Jin L., Yao R., Gong Z. Task offloading optimization in mobile edge
computing based on a deep reinforcement learning algorithm using density clustering
and ensemble learning. Scientific Reports. 2025. vol. 15. no. 1. DOI: 10.1038/s41598-
024-84038-3.

5. Rodriguez-Liria A.F., Cardenas R., Arroba P., Moya J.M., Risco-Martin J.L., Wainer G.
Decision Support Framework for Automating the Optimization of Edge Computing
Federations. Proceedings of 2023 Annual Modeling and Simulation Conference
(ANNSIM). 2023. pp. 49-60.

6. Liu J., Ren J., Zhang Y., Peng X., Zhang Y., Yang Y. Efficient Dependent Task
Offloading for Multiple Applications in MEC-Cloud System. IEEE Transactions on Mobile
Computing. 2021. vol. 22. no. 4. pp. 2147-2162. DOI: 10.1109/TMC.2021.3119200.

7. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Control of multipath transmissions in the
nodes of switching segments of reserved paths. Proceedings of International Conference
on Information, Control, and Communication Technologies (ICCT). 2022. pp. 1-5.

8. Wang X., Ji Y., Zhang J., Bai L., Zhang M. Low-Latency Oriented Network Planning for
MEC-Enabled WDM-PON Based Fiber-Wireless Access Networks. IEEE Access. 2019.
vol. 7. pp. 183383-183395. DOIL: 10.1109/ACCESS.2019.2926795.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Ko S.-W., Han K., Huang K. Wireless Networks for Mobile Edge Computing: Spatial
Modeling and Latency Analysis. IEEE Transactions on Wireless Communications. 2018.
vol. 17. no. 8. pp. 5225-5240. DOI: 10.1109/TWC.2018.2840120.

Elghitani F. Dynamic UAV routing for multi-access edge computing. IEEE
Transactions on Vehicular Technology. 2024. vol. 73. no. 6. pp. 8878-8888.
DOI: 1109/TVT.2024.3360253.

Dankolo N.M., Radzi N.H.M., Mustaffa N.H., Arshad N.I.,, Nasser M., Gabi D.,
Yusuf M.N. Optimizing resource allocation for IoT applications in the edge cloud
continuum using hybrid metaheuristic algorithms. Scientific Reports. 2024. vol. 15.
no. 1. DOI: 10.1038/s41598-025-97648-2.

Ismail A.A., Khalifa N.E., El-Khoribi R.A. A survey on resource scheduling approaches in
multi-access edge computing environment: A deep reinforcement learning study. Cluster
Computing. 2025. vol. 28. no. 3. DOI: 10.1007/510586-024-04893-7.

Filianin I., Kapitonov A., Timoshchuk-Bondar A. Gymnasium Library Interface for Multi
Access Edge Computing. Proceedings of 2024 6th International Conference on Control
Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2024.
pp. 162-166. DOI: 10.1109/SUMMA64428.2024.10803891.

Sun C., Wu X,, Li X., Fan Q., Wen J., Leung V.C.M. Cooperative Computation
Offloading for Multi-Access Edge Computing in 6G Mobile Networks via Soft Actor
Critic. Proceedings of IEEE Transactions on Network Science and Engineering. 2021.
vol. 11. no. 6. pp. 5601-5614. DOI: 10.1109/TNSE.2021.3076795.

Saad M.M., Jamshed M.A., Adedamola A.L., Nauman A., Kim D. Twin Delayed DDPG
(TD3)-Based Edge Server Selection for 5G-Enabled Industrial and C-ITS Applications.
IEEE Open Journal of the Communications Society. 2025. vol. 6. pp. 3332-3343.
DOI: 10.1109/0JCOMS.2025.3545566.

AnL., WangZ., Yue J., Ma X. Joint Task Offloading and Resource Allocation via Proximal
Policy Optimization for Mobile Edge Computing Network. Proceedings of International
Conference on Networking and Network Applications (NaNA). 2021. pp. 466—471.
DOI: 10.1109/NaNA53684.2021.00087.

Zhu L., Tan L., Li B., Tian H. An optimization scheme for vehicular edge computing
based on Lyapunov function and deep reinforcement learning. IET Communications.
2024. vol. 18. no. 15. pp. 908-924. DOI: 10.1049/cmu?2.12800.

Facchini C., Holland O., Granelli F., da Fonseca N.L.S., Aghvami H. Dynamic green
self-configuration of 3G base stations using fuzzy cognitive maps. Computer Networks.
2013. vol. 57. no. 7. pp. 1597-1610. DOI: 10.1016/j.comnet.2013.02.011.

Filianin L Lwmecps-gym. GitHub repository. Available at:
https://github.com/adeptvinl/Iwmecps-gym (accessed 01.08.2025).

Filianin I Lwmecps-testapp. GitHub repository. Available at:
https://github.com/adeptvinl/Iwmecps-testapp (accessed 03.08.2025).

Nieto G., de la Iglesia I., Lopez-Novoa U., Perfecto C. Deep Reinforcement Learning
techniques for dynamic task offloading in the 5G edge-cloud continuum. Journal of Cloud
Computing. 2024. vol. 13. no. 1. DOI: 10.1186/513677-024-00658-0.

Haarnoja T., Zhou A., Abbeel P., Levine S. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. Proceedings of the 35th International
Conference on Machine Learning. 2018. vol. 80. pp. 1861-1870.

Christodoulou P. Soft actor-critic for discrete action settings. arXiv preprint
arXiv:1910.07207. 2019. DOI: 10.48550/arXiv.1910.07207.

Ismail A.A., Khalifa N.E., El-Khoribi R.A. A survey on resource scheduling approaches in
multi-access edge computing environment: A deep reinforcement learning study. Cluster
Computing. 2025. vol. 28. no. 3. DOI: 10.1007/510586-024-04893-7.

25. Mock J.W., Muknahallipatna S.S. A comparison of PPO, TD3 and SAC reinforcement
algorithms for quadruped walking gait generation. Journal of Intelligent Learning Systems
and Applications. 2023. vol. 15. no. 1. pp. 36-56. DOI: 10.4236/jilsa.2023.151003.

Filianin Ivan — Ph.D. student, Faculty of software engineering and computer systems, ITMO
University. Research interests: machine learning algorithms, deep neural networks, reinforcement
learning, and their application in decision-making tasks for deploying computing services in
geographically distributed data processing nodes, as well as in production optimization tasks. The
number of publications — 6. adeptvinl @ gmail.com; 49, Kronverksky Ave., 197101, St. Petersburg,
Russia; office phone: +7(999)080-3237.

Kapitonov Aleksandr — Ph.D., Associate Professor, Deputy dean, New Uzbekistan University.
Research interests: robot economics, blockchain technology applications in robotics, autonomous
systems and UAVs, control theory, multi-agent systems, the integration of Large Language Model
(LLM) agents in robotic systems. The number of publications — 77. kap2fox @gmail.com; 1,
Movarounnahr, 100000, Tashkent, Uzbekistan; office phone: +7(950)000-2896.

Timoshchuk-Bondar Artem — Software engineer, Faculty of software engineering and computer
systems, ITMO University. Research interests: machine learning algorithms, deep neural networks,
reinforcement learning, and their application in decision-making tasks for deploying computing
services in geographically distributed data processing nodes, as well as in production optimization
tasks. The number of publications — 1. artbondar2003 @ gmail.com; 49, Kronverksky Ave.,
197101, St. Petersburg, Russia; office phone: +7(950)517-2406.

VIK 006.72 DOI 10.15622/ia.25.1.8

N.B. duigaHuH, A.A. KATIMTOHOB, A.U. TUMOIIYK- BOHIAP
NCCJIIEJOBAHUE AJITOPUTMOB OBYUEHU A
C ITOAKPEIVIEHUEM JIJI11 CHUKEHU A CETEBON 3AJIEPKKHA
B TPAHUYHbBIX BBIYNCJIEHUAX

Quasnun U.B., Kanumomnos A.A., Tumowyk-Bonodap A.H. HccaenoBaHnue ajJropurMoB
00yJeHHsI ¢ NOJKPenJIeHneM LIS CHIPKEHHSI CeTeBOil 3a]eP’KKH B TPAaHHYHbIX BHIYHCJIEHHSIX.

AnHoTtanusi. CoBpeMeHHbIe HCCIIeIOBAHUs aTOPUTMOB IPHHATHUS PELICHUH B CUCTEMax
multi-access edge computing (MEC) n1s 3amad pacnpesieieHusi pecypcoB 3a4acTylo
OCHOBBIBAIOTCSI Ha YNPOIICHHBIX aOCTPAKLUMSAX CETEBOH TOMOJOTHH, YTO OrPaHUYMBACT
MPHMEHNMOCTD TIOJTyYEHHBIX PE3y/IbTAaTOB B PeasIbHBIX YCJIOBHSIX SKCIUTyaTallid MOOMJIBLHBIX
cereit. Llenbio qaHHON paboOTHI SABISETCs pa3padOTKa PeaTUCTHIHON MOJEIU CETH COTOBOM
CBSI3U C MHCIIOJNB30BAaHMEM METOJOB CTOXAaCTUUECKON TeOMeTPHU M KOMIUIEKCHAsl OLEHKa
3 PEKTHBHOCTH COBPEMEHHBIX aITOPUTMOB 00y 4YEHH C MOJKPEIUICHUEM B 3a1a4aX MUHUMU3ALHH
CeTeBbIX 3aJepkeK B TPAHUYHBIX BBUMCIEHUAX. Metox. JIns co3maHust MaTeMaTHUECKU
00OCHOBAHHOM MOJIEJIM CETEBOI CPeIbl UCIIONIb30BATMCH METOJIBI CTOXACTUYECKOI TeOMETPHH B
COYETAaHUH C PeabHBIMU CTATUCTHYECKMMHU JaHHBIMU PacIpeie/IeHNs I0Ib30BaTesell COTOBBIX
cereil. [IpuMeHeHne CTOXAaCTHYECKON IeOMETPHUH OOECIIeUIO KOPPEKTHOE MOEIMPOBAHHE
MPOCTPAHCTBEHHOTO pa3MellleHnsi 0a30BbIX CTaHLHMHA M pacyeT MekKy3JIOBBIX PacCTOSHUM,
KPUTHYECKH BaXKHBIX IJIS1 ONpEfesIeHUs] CeTeBhIX 3aiepkeK. DKCIepUMEHTalbHasi OLeHKa
npoBoaniack Ha 6ase nopadoranHoii miatdopmsl LWMECPS ¢ pacipenssiv Gymnasium
API, nognepxuBalonmm aaroputMsl PPO, TD3 u SAC. OcHoBHBIe pe3yabTaThl. PazpaboTana
MOJIeJIb CETH CBSI3H, YUHTHIBAIOLIAsl PEaTUCTHYHOE IIPOCTPAHCTBEHHOE PACIIpEe/ieNIeHHe CETEBBIX
9JIEMEHTOB ¥ BPEeMEHHYI0 IMHAMUKY IMOJIb30BaTeJbCKOM Harpysku. Ha ocHoBe naHHOI
MOJIEJI CO3J]aHO BUPTYaJIM3UPOBAHHOE TecToBoe okpyxkeHne B LWMECPS, nosponsiomee
MPOBOIHUTH BOCHPOU3BOJUMBIE IKCIIEPUMEHTHI C KOHTPOIUPYEMBIMH IapaMeTpamMu. Pe3ynpraTst
IKCIIEPHMEHTOB IOKA3aJi Pa3JIMiusl B XapaKTePHCTUKAX IPOU3BOAUTETLHOCTH Pa3IMIHBIX
anroputmoB: PPO obGecrnieuns cTabuiibHOE COKpalleHne 3aaepkku 10 20% co crabuibHOR
koHBeprennueit; SAC nposeMOHCTPHPOBaAT HanOobIee aOCOMOTHOE yTy4IlleHre (COKpalleHre
3a0epkKd Ha 38%), HO NPOSBII HECTaOWJIBHOCTh NpHM MHHIMamu3amuy; TD3 mnokaszan
yMepeHHyI0 3dekTuBHOCTS (yrydimeHue 10 11%), Ho BBICOKYIO 1yBCTBUTEILHOCTh K HACTPONKE
runeprapameTpos. O6cyskaeHue. [IpoBeIeHHbIN CpaBHUTEIBHBINA aHAJN3 AITOPUTMOB MALIMHHOTO
00y4eHus ¢ HOJKPEeIICHHeM BBISBUII KJTI0UeBble 0COOeHHOCTU UX npuMeHeHus: B MEC-cucrtemax.
VYcTaHOBIIEHO, YTO AWCKPETHBIA XapakTep 3ajad pa3MeIleHUs] CEPBHCOB JeJaeT aJrOpPUTM
PPO HauGosee NOAXOAAMNM s IPAKTHYECKOTO BHEAPEHHsI B CUCTEMbI NIPUHATHS PEIICHMI
6rarogapsi ero CTabMIBHOCTU CXOAUMOCTH U €CTECTBEHHO! MOAEPXKKE TUCKPETHBIX IPOCTPAHCTB
aeiicteuit. [ToydeHHbIE pe3yJIbTaThl PEAOCTABIAIOT HAYYHO 0OOCHOBAHHbBIC PEKOMEH/IALINN 1JTs
paspabotunkoB MEC-11aT¢opm 1o BEIOOPY ONTUMAIBHBIX aITOPUTMUYECKUX PEIIeHUIA.

KuroueBble ciioBa: 00ydeHne ¢ NOAKPEIUICHHEM, I'PaHHYHBIE BBIYMCIICHUS C MHOXECTBEHHBIM
nocrynom (Multi-Access Edge Computing), ontumu3anus HoJaMTUKY 1o npudmpkenuio (Proximal
Policy Optimization), Soft Actor-Critic, anroputm TD3 (Twin Delayed Deep Deterministic Policy
Gradient), LWMECPS, Weights & Biases (WandB).

10.

11.

12.

13.

14.

15.

JIuteparypa
Cruz P., Achir N, Viana A.C. On the edge of the deployment: A survey on multi-
access edge computing. ACM Computing Surveys. 2022. vol. 55. no. 5. pp. 1-34.
DOI: 10.1145/3529758.
Yi Y., Zhang G., Jiang H. Mobile Edge Computing Networks: Online Low-Latency and
Fresh Service Provisioning. IEEE Transactions on Communications. 2025.
Wang K., Akhtar S.F., Al-Zahrani F.A. An Efficient Algorithm for Resource Allocation
in Mobile Edge Computing Based on Convex Optimization and Karush—-Kuhn—Tucker
Method. Complexity. 2023. vol. 2023(1). pp. 1-15. DOI: 10.1155/2023/9604454.
Qin Y., ChenJ., Jin L., Yao R., Gong Z. Task offloading optimization in mobile edge
computing based on a deep reinforcement learning algorithm using density clustering
and ensemble learning. Scientific Reports. 2025. vol. 15. no. 1. DOI: 10.1038/s41598-
024-84038-3.
Rodriguez-Liria A.F., Cérdenas R., Arroba P., Moya J.M., Risco-Martin J.L., Wainer
G. Decision Support Framework for Automating the Optimization of Edge Computing
Federations. Proceedings of 2023 Annual Modeling and Simulation Conference
(ANNSIM). 2023. pp. 49-60.
LiulJ.,RenJ., Zhang Y., Peng X., Zhang Y., Yang Y. Efficient Dependent Task Offloading
for Multiple Applications in MEC-Cloud System. IEEE Transactions on Mobile
Computing. 2021. vol. 22. no. 4. pp. 2147-2162. DOI: 10.1109/TMC.2021.3119200.
Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Control of multipath transmissions
in the nodes of switching segments of reserved paths. Proceedings of International
Conference on Information, Control, and Communication Technologies (ICCT). 2022.
pp. 1-5.
Wang X., Ji Y., Zhang J., Bai L., Zhang M. Low-Latency Oriented Network Planning
for MEC-Enabled WDM-PON Based Fiber-Wireless Access Networks. IEEE Access.
2019. vol. 7. pp. 183383-183395. DOI: 10.1109/ACCESS.2019.2926795.
Ko S.-W,, Han K., Huang K. Wireless Networks for Mobile Edge Computing: Spatial
Modeling and Latency Analysis. IEEE Transactions on Wireless Communications. 2018.
vol. 17. no. 8. pp. 5225-5240. DOI: 10.1109/TWC.2018.2840120.
Elghitani F. Dynamic UAV routing for multi-access edge computing. IEEE
Transactions on Vehicular Technology. 2024. vol. 73. no. 6. pp. 8878-8888.
DOI: 1109/TVT.2024.3360253.
Dankolo N.M., Radzi N.H.M., Mustaffa N.H., Arshad N.I., Nasser M., Gabi D.,
Yusuf M.N. Optimizing resource allocation for IoT applications in the edge cloud
continuum using hybrid metaheuristic algorithms. Scientific Reports. 2024. vol. 15.
no. 1. DOI: 10.1038/541598-025-97648-2.
Ismail A.A., Khalifa N.E., ElI-Khoribi R.A. A survey on resource scheduling approaches
in multi-access edge computing environment: A deep reinforcement learning study.
Cluster Computing. 2025. vol. 28. no. 3. DOI: 10.1007/s10586-024-04893-7.
Filianin L., Kapitonov A., Timoshchuk-Bondar A. Gymnasium Library Interface for Multi
Access Edge Computing. Proceedings of 2024 6th International Conference on Control
Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2024.
pp. 162-166. DOI: 10.1109/SUMMA64428.2024.10803891.
Sun C., Wu X., Li X., Fan Q., Wen J., Leung V.C.M. Cooperative Computation
Offloading for Multi-Access Edge Computing in 6G Mobile Networks via Soft Actor
Critic. Proceedings of IEEE Transactions on Network Science and Engineering. 2021.
vol. 11. no. 6. pp. 5601-5614. DOI: 10.1109/TNSE.2021.3076795.
Saad M.M., Jamshed M.A., Adedamola A.I., Nauman A., Kim D. Twin Delayed DDPG
(TD3)-Based Edge Server Selection for 5G-Enabled Industrial and C-ITS Applications.

IEEE Open Journal of the Communications Society. 2025. vol. 6. pp. 3332-3343.
DOI: 10.1109/0JCOMS.2025.3545566.

16. An L., Wang Z., Yue J., Ma X. Joint Task Offloading and Resource Allocation via
Proximal Policy Optimization for Mobile Edge Computing Network. Proceedings of
International Conference on Networking and Network Applications (NaNA). 2021.
pp. 466—471. DOL: 10.1109/NaNA53684.2021.00087.

17. Zhu L., Tan L., Li B., Tian H. An optimization scheme for vehicular edge computing
based on Lyapunov function and deep reinforcement learning. IET Communications.
2024. vol. 18. no. 15. pp. 908-924. DOI: 10.1049/cmu2.12800.

18. Facchini C., Holland O., Granelli F., da Fonseca N.L.S., Aghvami H. Dynamic green
self-configuration of 3G base stations using fuzzy cognitive maps. Computer Networks.
2013. vol. 57. no. 7. pp. 1597-1610. DOI: 10.1016/j.comnet.2013.02.011.

19. Filianin L Lwmecps-gym. GitHub repository. Available at:
https://github.com/adeptvinl/lwmecps-gym (accessed 01.08.2025).

20. Filianin I Lwmecps-testapp. GitHub repository. Available at:
https://github.com/adeptvin1/lwmecps-testapp (accessed 03.08.2025).

21. Nieto G., de la Iglesia I., Lopez-Novoa U., Perfecto C. Deep Reinforcement Learning

techniques for dynamic task offloading in the 5G edge-cloud continuum. Journal of
Cloud Computing. 2024. vol. 13. no. 1. DOI: 10.1186/s13677-024-00658-0.

22. Haarnoja T., Zhou A., Abbeel P., Levine S. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. Proceedings of the 35th
International Conference on Machine Learning. 2018. vol. 80. pp. 1861-1870.

23. Christodoulou P. Soft actor-critic for discrete action settings. arXiv preprint
arXiv:1910.07207. 2019. DOI: 10.48550/arXiv.1910.07207.
24. Ismail A.A., Khalifa N.E., El-Khoribi R.A. A survey on resource scheduling approaches

in multi-access edge computing environment: A deep reinforcement learning study.
Cluster Computing. 2025. vol. 28. no. 3. DOI: 10.1007/s10586-024-04893-7.

25. Mock J.W., Muknahallipatna S.S. A comparison of PPO, TD3 and SAC
reinforcement algorithms for quadruped walking gait generation. Journal of
Intelligent Learning Systems and Applications. 2023. vol. 15. no. 1. pp. 36-56.
DOI: 10.4236/jilsa.2023.151003.

Puiaaand MBan BukropoBuu — acnupaHTt, (akyabTeT HpOrpaMMHON HMHXKEHEpPUH U
KOMIIbIoTepHO#l TexHuku, YHusepcutrer UTMO. O6nacth HaydHBIX MHTEPECOB: I'PAHUYHbIC
BBIUMCJICHUS] C MHOXECTBEHHBIM JIOCTYIIOM, MOOWJIbHBIE CETH CBS3H. UMCIO HaydHBIX

nyOmukammii — 6. adeptvinl @gmail.com; Kponsepkckmii mpocmekt, 49A, 197101,
Canxr-IletepOypr, Poccust; p.1.: +7(999)080-3237.
KanutoHoB AJiekcanap AJieKCaHIPOBHY — KaHJA. TE€XH. HayK, [IOLEHT, 3aMEeCTUTEI]b

nekaHa, Hoswlii YHuBepcuter Y30ekucrana. OO1acTh HayUHBIX HMHTEPECOB: IPUMEHEHHe
TEXHOJIOTMH OJIOKYEHH B POOOTOTEXHUKE, ABTOHOMHBIC CHCTEMBI ¥ OECITMIIOTHBIE JICTaTeIIbHbIE
anmaparsl, TEOpUs yIpaBJeHHs, MyJIbTHATeHTHbE CUCTEMBI U HHTErpaius areHToB Large
Language Model (LLM) B poOOTOTEXHUYECKUX CHCTeMaXx.. YHCII0 HayuHBIX MmyOauKanuit — 77.
kap2fox @ gmail.com; MoBapoynnaxpa, 1, 100000, Tamikent, ¥Y36ekucran; p.1.: +7(950)000-2896.

Tumomyk-Bongaps Aprem HropeBnd — vHKEHEp-POrpaMMUCT, (haKyJIbTET NPOrpaMMHOI
WHXEHepUU ¥ KOMIIBIOTEPHON TeXHUKH, YHuBepcuteT UTMO. O61acTh HayIHBIX HHTEPECOB:
HCKYCCTBEHHBIN MHTEJUIEKT, CUCTEMbI IPUHSTHUS perieHnit. Yucio HaydHbIX myOamkamuii — 1.
artbondar2003 @ gmail.com; KponBepkckuii npocnexT, 49, 197101, Cankt-Iletep6ypr, Poccus;
p.T.: +7(950)517-2406.

	Introduction
	Literature Review
	Decision-Making Methods for Reducing Network Latency in Edge Computing
	Limitations
	Development of a System for Evaluating RL Algorithms in Network Latency Reduction Tasks
	Conclusion

