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Abstract. Deepfake detection continues to pose significant challenges, primarily because
existing methods often suffer from key limitations, including reliance on individual frame
analysis, vulnerability to low-resolution or compressed videos, and inability to capture
temporal inconsistencies. Furthermore, traditional face detection techniques frequently fail
under challenging conditions such as poor lighting or occlusion, while many models struggle
with subtle manipulations due to inadequate feature extraction and overfitting on limited
datasets. To address the drawbacks of existing deepfake detection approaches, this research
proposes a Face and Motion-Aware Detection Framework that integrates both spatial and
temporal information. The framework begins with a preprocessing stage that extracts video
frames at a fixed rate to ensure temporal consistency. Facial regions and detailed landmarks are
accurately detected using BlazeFace and MediaPipe Face Mesh. These features are then
processed by the proposed XceptionCapsule Net, which combines the spatial feature extraction
capabilities of the Xception model with the hierarchical and viewpoint-aware representation of
Capsule Networks (CapsNet), and the temporal dependency modeling power of a Bidirectional
Long Short-Term Memory (BiLSTM) layer. The architecture incorporates Global Average
Pooling, Flatten, and fully connected layers, with Sigmoid activation for binary classification.
Extensive evaluations on the FaceForensics++ (FF++) and Celeb-DF datasets demonstrate
strong performance, achieving up to 99.31% accuracy and 99.99% Area Under the Curve
(AUC). The results validate the framework’s effectiveness, precision, and generalization across
various video qualities and manipulation scenarios.

Keywords: deepfake detection, XceptionCapsule Net, Face Mesh, BlazeFace, facial
landmark extraction, video forensics.

1. Introduction. The human face is one of the most defining features
of an individual, making it a critical component in identity recognition
systems [1]. As facial recognition technologies continue to evolve, so do
concerns regarding their misuse, particularly with the rapid advancement of
facial synthesis techniques. Among the most concerning developments is
deepfake technology, an artificial intelligence-driven method that enables
the seamless manipulation of facial features. This technology allows a
person’s face to be superimposed onto another's individual in a video
without consent, raising serious ethical, legal, and security concerns.
Deepfakes pose serious threats as they can be exploited to spread
misrepresentation, steal identities, and carry out harmful activities [2, 3].

Deepfake content, typically in the form of synthetic videos and
images, is widely disseminated across social media platforms. Although
digital image manipulation has existed since the early days of
photography [4], it traditionally required significant expertise and manual



effort, often involving software such as Adobe Photoshop. In contrast, the
advent of Artificial intelligence (Al)-based tools has democratized content
manipulation. With minimal technical knowledge, users can now generate
highly realistic fake videos, making face-swapping and fabricated scenarios
appear convincingly authentic [5 — 7].

Deepfake videos are typically generated using machine learning
algorithms that digitally alter a subject’s appearance by replacing it with
that of another individual. These alterations are typically grouped into three
main categories:

Head Puppetry: Synchronizes the head and shoulder movements of
the target with those of a source individual.

Face Swapping: Replaces one person’s face with another while
maintaining the original expressions.

Lip-Syncing: Alters lip movements to match audio content not
originally spoken by the subject [6].

While traditional computer graphics methods have been employed
for similar purposes, modern deepfake generation predominantly relies on
deep learning (DL) techniques, including generative adversarial networks
(GANs) and autoencoders, which significantly enhance the realism of
synthetic media and complicate detection efforts [7, 8]. In addition to these,
diffusion-based generative models have recently gained prominence in
content synthesis. Models such as Stable Diffusion [9], DALL-E [10],
MidJourney [11], and Sora [12] can generate or manipulate highly realistic
images and videos from simple textual prompts. By progressively denoising
random noise into coherent outputs, these models offer unprecedented
control and realism, making synthetic media creation more accessible and
further intensifying the challenges of deepfake detection [13, 14]. Recent
studies report a substantial increase in deepfake content across digital
platforms, intensifying concerns around fraud, misinformation, and privacy
violations. To address this challenge, leading organizations such as Defense
Advanced Research Projects Agency (DARPA), Facebook, and Google
have launched initiatives focused on developing advanced deepfake
detection technologies [15, 16]. Numerous DL-based approaches have
emerged to address this threat. Techniques involving Long Short-Term
Memory (LSTM) networks, Recurrent Neural Networks (RNNs), and
hybrid models have shown promise in identifying manipulated media.
Additionally, Deep Neural Networks (DNNs) have shown effectiveness in
detecting fake news and misleading social media content [17, 18].

However, significant research gaps persist. A major limitation of
many current models is their reliance on individual frame analysis, which
ignores temporal inconsistencies such as unnatural head movements and



facial expressions. This highlights the importance of temporal modeling
through RNNs, LSTMs, or transformer-based architectures to better
understand sequential patterns in videos. Additionally, existing systems
struggle with low-resolution or compressed videos, where common artifacts
are masked, hindering manipulation detection. Face detection, a crucial
preprocessing step, is especially vulnerable under real-world conditions,
such as occlusion, poor lighting, and low resolution, often resulting in
missed or inaccurate face localization. Moreover, as deepfake generation
grows more sophisticated, many subtle alterations bypass detection due to
the limited feature extraction capabilities of traditional models. Another
pressing issue is overfitting, primarily driven by scarce and homogeneous
training datasets, which undermines model generalization across diverse
manipulation types and datasets. These challenges underscore the urgent
need for a versatile, temporally aware, and generalizable deepfake detection
framework that can operate effectively under a variety of media conditions
and evolving manipulation techniques. To bridge these gaps, this study
presents a face and motion-aware framework that effectively utilizes spatial
and temporal information to achieve reliable and high-accuracy deepfake
detection. The primary contributions are as follows:

1.  An innovative framework designed to improve the accuracy
and reliability of deepfake detection by combining spatial and temporal
feature analysis.

2. The framework ensures consistent frame extraction at a fixed
sampling rate to maintain video-level coherence. It utilizes BlazeFace [19]
for efficient face localization and landmark detection, along with MediaPipe
Face Mesh [20], to provide accurate spatial inputs under challenging
conditions such as low resolution, occlusion, and lighting variations.

3. A hybrid deep neural network (DNN) is designed by integrating
the Xception model [21] with Capsule Networks (CapsNet) [22] to capture
spatial hierarchies and viewpoint variations. This architecture enhances
sensitivity to fine-grained facial anomalies and improves generalization
across different manipulation types.

4. Temporal dependency modeling is introduced through a
Bidirectional Long Short-Term Memory (BiLSTM) layer, which captures
sequential relationships and motion continuity between consecutive frames.
This addition allows the model to detect temporal inconsistencies in
blinking, lip movement, and head motion that are commonly present in
manipulated videos.

5. The model employs Global Average Pooling (GAP), followed
by Flatten and fully connected layers, with sigmoid activation to ensure
robust binary classification.



This article is structured to offer a thorough and organized
explanation of the proposed deepfake detection approach. Section 2 reviews
relevant literature, outlining existing methods, notable contributions, and
existing research gaps in deepfake detection. Section 3 explains the
proposed approach in detail, covering the preprocessing steps, extraction of
spatial and temporal features, and the overall architecture of the detection
model. Section 4 presents the experimental setup and results, accompanied
by a detailed performance evaluation using standard benchmark datasets.
Finally, Section 5 summarizes the main outcomes and discusses potential
future improvements to enhance the effectiveness, adaptability, and
reliability of deepfake detection systems.

2. Literature Review. The rapid progress in deepfake generation
technologies in recent years has raised serious concerns about the credibility
and authenticity of digital content. In response, a range of DL-based
detection approaches have been proposed, aiming to accurately differentiate
authentic content from manipulated media. Existing literature explores
various strategies, including hybrid models, attention mechanisms, and
temporal analysis, to address the limitations of earlier frame-level or spatial-
only methods. These efforts underscore the urgent need for robust,
generalizable frameworks capable of detecting subtle visual and temporal
inconsistencies across diverse datasets and manipulation techniques.

In paper [23] the authors introduced a novel approach to deepfake
detection by analyzing the contribution of distinct facial regions using face
cutout techniques. This study was included in our review because it
addresses the overfitting problem in deepfake datasets and aligns with the
emerging trend of leveraging facial region importance for more robust
detection. Input images were augmented by selectively removing facial
areas based on landmarks, creating diverse training samples, while training
was conducted with an 80/10/10 split for training, validation, and testing.
The methodology was evaluated on FF++ and Celeb-DFv2 datasets,
achieving up to 91% accuracy on Celeb-DF and demonstrating the
significance of external facial features, particularly the eyes, for detection.
This work highlights a broader trend in deepfake research toward targeted
data augmentation strategies and feature-aware model training, though it
suggests further exploration is needed for video-based deepfake detection
and cross-dataset generalization.

Paper [24] proposed a Frequency-Enhanced Self-Blended Images
(FSBI) approach for deepfake detection, which blends images with
themselves to introduce generic forgery artifacts and uses Discrete Wavelet
Transform (DWT) to extract discriminative frequency-domain features.
This study was included in our review because it demonstrates a trend



toward frequency-aware and artifact-generalized detection strategies that
improve model robustness and cross-dataset generalization. The model was
evaluated on FF++ and Celeb-DF datasets using both within-dataset and
cross-dataset protocols, achieving an AUC of 95.49% when trained on
FF++ and tested on Celeb-DF, highlighting strong adaptability to unseen
manipulations. FSBI effectively mitigates overfitting to dataset-specific
artifacts, and ablation studies confirmed the benefits of self-blending and
frequency feature extraction. This work illustrates the broader research
trend of combining spatial and frequency-domain analysis for deepfake
detection, though performance remains lower for certain complex
manipulations such as NeuralTextures (NT) and Face2Face (F2F),
suggesting areas for further improvement in real-world scenarios.

In paper [25] the authors proposed an efficient deepfake detection
framework using a hybrid ResNet-Swish-BiLSTM network, which
combines residual learning for spatial features with recurrent modeling of
temporal dependencies. The model was extensively tested on the
FaceForensics++ (FF++) and Deepfake Detection Challenge (DFDC)
datasets, achieving 96.23% accuracy on FF++ and 78.33% accuracy when
aggregating FF++ and DFDC records. To assess generalization, they further
conducted cross-corpus experiments using Celeb-DF, where performance
dropped to AUC values of 71.56% (DFDC) and 70.04% (Celeb-DF) when
trained on FF++, and 70.12% (FF++) and 65.23% (Celeb-DF) when trained
on DFDC. This evaluation highlights a broader trend in deepfake detection
research: models often perform well in database-internal evaluations but
degrade under cross-dataset conditions due to differences in compression,
resolution, and manipulation artifacts. The study was included in our review
as it illustrates both the strength of hybrid spatial-temporal learning and the
persistent challenge of cross-dataset generalization, which directly relates to
our proposed approach.

Paper [26] introduced a deepfake detection framework, BMNet, that
integrates BiLSTM to capture temporal dependencies across frames and
multi-head self-attention (MHSA) to extract localized forgery features from
facial regions. Unlike static CNN-based methods, BMNet explicitly models
both temporal and regional inconsistencies, addressing a key gap in prior
research. The model was evaluated on four benchmark datasets (FF++,
UADFV, Celeb-DF, DFDC) and achieved 95.54%, 92.18%, 80.20%, and
84.72% accuracy, respectively, demonstrating consistent improvements
across varying data sources. Importantly, the inclusion of landmark-based
features enhanced interpretability and robustness, with ablation studies
confirming the contribution of both BiLSTM and MHSA modules. This
work was included in our survey because it exemplifies a spatiotemporal



trend in deepfake detection and shows stronger cross-dataset adaptability
than handcrafted or purely spatial CNN models, while still highlighting the
persistent performance gap on Celeb-DF compared to easier datasets.

In [27] the authors introduced a stacking-based ensemble framework
that fuses deep features from Xception and EfficientNet-B7, followed by
feature ranking and classification using an MLP meta-learner. The model
achieved 96.33% accuracy on Celeb-DF (V2) and 98.00% on
FaceForensics++ (FF++), outperforming the individual base models. Their
experimental setup used clear train/validation/test splits for both datasets,
ensuring fair evaluation and reproducibility. This work was selected as it
represents the ensemble and meta-learning trend in deepfake detection,
focusing on combining complementary deep models with feature selection
for improved robustness. However, the authors also noted limitations,
including increased computational cost, reduced interpretability, and
potential overfitting risks, issues that remain common across ensemble
approaches. The study is significant because it demonstrates how carefully
designed stacking can improve cross-dataset generalization, while also
highlighting challenges in balancing accuracy with efficiency and
transparency.

Paper [28] introduced a self-supervised BEiT-HPR (Hierarchical
PatchReducer) model for efficient facial deepfake detection aimed at
addressing the high computational cost associated with existing detection
systems. The study was motivated by the growing difficulty of
distinguishing real from fake facial videos due to the rapid advancement of
generative models and the impracticality of deploying complex models in
resource-limited environments. Experimental results across FF++, Celeb-
DF, and DFD datasets demonstrated notable efficiency gains and strong
detection performance. However, the approach may face limitations in
handling unseen forgery types or cross-dataset generalization due to its
reliance on self-supervised pretraining within limited data domains.

In paper [29] the authors proposed ConvNext-PNet, an interpretable
and explainable deep learning framework for detecting visual deepfakes,
aiming to enhance trust and transparency in Al-based forgery detection. The
motivation behind this work was to address the limitation of existing
deepfake detection models that, despite achieving high accuracy, lack
interpretability and fail to justify their classification decisions. By
integrating prototype learning into a modified ConvNext architecture, the
model not only improves discriminative feature learning but also provides
visual reasoning for its predictions, thereby increasing user trust.
Experimental evaluations on benchmark datasets such as FF++, CelebDF,
DFDC-P, and DFF demonstrated high robustness and effective detection of



visual manipulations. However, the added interpretability components may
introduce additional computational overhead, potentially limiting real-time
applicability in large-scale or streaming scenarios.

In [30] the authors introduced an improved deepfake video detection
framework based on a Convolutional Vision Transformer (CViT2) that
combines the strengths of CNNs and Vision Transformers to enhance
detection accuracy and generalization. The model was proposed to address
the limitations of existing CNN-based methods, which often struggle to
capture global dependencies and contextual information in video frames. By
employing a CNN for extracting learnable spatial features and a Vision
Transformer for modeling long-range relationships using attention
mechanisms, the CViT2 architecture effectively identifies subtle
manipulation cues in deepfake videos. Experiments conducted across
multiple benchmark datasets, including DFDC, FF++, Celeb-DF v2, and
DeepfakeTIMIT, demonstrated high accuracy and strong cross-dataset
robustness. However, the model’s complex structure and heavy training
requirements may restrict its real-time applicability and scalability in low-
resource environments.

Paper [31] proposed a robust face forgery detection framework that
integrates both local and global texture information to enhance detection
accuracy and generalization. The method was introduced to address the
limitations of existing CNN-based approaches, which often overfit training
data and fail to capture subtle forgery traces across diverse sources and
post-processing variations. By employing a two-stream architecture
combining RGB and texture features, along with an adaptive feature fusion
and attention mechanism, the model effectively exposes fine-grained
artifacts at multiple scales. This approach improves robustness and feature
discrimination, leading to better performance across benchmark datasets.
However, the model’s complexity and computational cost may limit its
deployment in real-time or resource-constrained environments.

Paper [32] proposed a hybrid CNN-LSTM model for video deepfake
detection that leverages optical flow features to capture both spatial and
temporal cues from video frames. The approach was introduced to
overcome the limitation of conventional CNN-based methods, which
primarily focus on spatial information and fail to exploit temporal
dependencies between frames. This hybrid strategy enhances detection
accuracy even with a limited number of samples, achieving competitive
results on benchmark datasets such as DFDC, FF++, and Celeb-DF.
However, the model’s performance may still be constrained by moderate
accuracy on challenging datasets and dependence on precise optical flow
computation, which can increase computational overhead.



These studies highlight the evolving sophistication of deepfake
detection frameworks and the need to incorporate spatial, temporal, and
attention-based mechanisms. Nonetheless, existing methods often fail to
address issues such as generalization [27] to unseen manipulations, real-world
distortions, and computational efficiency. Table 1 offers a detailed overview
of the main insights and approaches highlighted in the literature review.

Table 1. Overview of the literature review
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A comprehensive review of recent studies reveals several key trends
and research directions in the domain of deepfake detection. Contemporary
approaches increasingly emphasize spatial-temporal integration, where
models such as those in [25—27, 30, 32] combine spatial and temporal
features to overcome the limitations of static frame analysis. Techniques
incorporating BiLSTM or hybrid CNN-LSTM frameworks have
demonstrated the ability to capture motion inconsistencies across consecutive
frames, thereby improving temporal awareness and detection accuracy.
Another significant development is the adoption of attention-based and



transformer-based mechanisms, as observed in BMNet [26], CViT2 [30], and
GRAM [31], which capture global relationships and multi-scale feature
dependencies to achieve better generalization across diverse datasets.
Furthermore, frequency and artifact-based analysis methods, including DWT
and FSBI [24], have proven effective in identifying high-frequency
inconsistencies that are often imperceptible in RGB domains. Researchers
have also explored ensemble and meta-learning strategies [27, 31], where
complementary features from CNN and transformer architectures are fused to
enhance stability and robustness, albeit at increased computational cost. In
parallel, there is growing attention toward explainable and efficient detection
models [28, 29], which ensure interpretability and real-time applicability —
key requirements for deployment in social media monitoring and law
enforcement systems. Despite these advancements, a persistent cross-dataset
generalization gap remains a major challenge, as many models still exhibit
significant performance degradation when evaluated on unseen data [25, 27].
Overall, the literature reflects a clear evolution from static, handcrafted
models toward dynamic, spatial-temporal, and attention-driven architectures,
with a heightened emphasis on explainability, efficiency, and adaptability.
Building on these emerging trends, the proposed research introduces a unified
Face and Motion-Aware XceptionCapsule Net that synergistically integrates
spatial and temporal cues to achieve enhanced robustness and reliability in
detecting diverse deepfake manipulations.

3. Proposed methodology. Existing deepfake detection models
encounter several critical challenges that significantly impact their accuracy
and robustness [23, 24]. A primary limitation is their reliance on individual
frame analysis, which performs inadequately on low-resolution or highly
compressed videos where visual artifacts such as blurring and pixelation are
less perceptible [25, 26]. This diminishes the model’s effectiveness in
identifying manipulated content. Furthermore, face detection in such models
is highly sensitive to environmental factors, including poor lighting,
occlusions, and extreme facial angles, often resulting in missed or inaccurate
face localizations [27, 28]. Another key limitation lies in the disregard of
temporal inconsistencies. Since many models process frames independently,
they fail to capture unnatural head movements or inconsistent facial
expressions that may indicate tampering [29, 30]. As deepfake generation
techniques become increasingly sophisticated, subtle manipulations with
minimal visual cues often go undetected due to inadequate feature extraction
mechanisms [21]. Additionally, many models suffer from overfitting,
primarily caused by limited and homogeneous training data, thereby
restricting their generalization to unseen deepfake formats and real-world
media conditions [33, 34].



To overcome these drawbacks, this work proposes an innovative Face
and Motion-Aware Detection Framework. The preprocessing step enhances
temporal consistency by extracting video frames at a uniform frame rate. For
face detection, the framework employs BlazeFace, which enables efficient
and accurate facial region extraction. Subsequently, MediaPipe Face Mesh is
used to extract detailed 3D facial landmarks, improving the granularity of
spatial feature identification. The extracted features are then fed into the
proposed XceptionCapsule-BiLSTM Net, which integrates the Xception
network, CapsNet, and a Bidirectional Long Short-Term Memory (BiLSTM)
layer to jointly capture spatial details and temporal dependencies. The
Xception module, utilizing depthwise separable convolutions, is effective at
extracting fine-grained spatial features that are critical for identifying
deepfake artifacts. In parallel, the CapsNet component preserves spatial
hierarchies and models the interrelationships between features, while the
BiLSTM layer captures sequential frame relationships and motion dynamics,
enabling the detection of temporal anomalies such as unnatural motion or
facial distortions. The model architecture incorporates Global Average
Pooling (GAP) to reduce dimensionality, a Flatten layer to vectorize the
features, and Fully Connected layers to extract high-level representations. A
Sigmoid activation function is used for binary classification between real and
fake content. The strength of this approach lies in its unified spatial-temporal
modeling via the XceptionCapsule-BiLSTM Net, which enhances the
detection of subtle manipulations and improves robustness against common
real-world challenges such as low resolution, compression artifacts, and
sophisticated forgery techniques. Experimental evaluations (see Section 4)
confirm the efficacy and generalizability of the proposed approach on
multiple benchmark datasets. Figure 1 illustrates the block diagram of the
proposed deepfake detection methodology.
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3.1. Preprocessing: BlazeFace Mesh Processor. The preprocessing
stage plays a crucial role in enhancing deepfake detection, especially when
dealing with low-resolution or highly compressed video inputs. Such
conditions often obscure subtle artifacts and degrade the accuracy of face
detection, particularly under poor lighting, occlusions, or low image quality.
To overcome these drawbacks, this work introduces a novel BlazeFace
Mesh Processor, designed to ensure robust and consistent facial region
extraction. Initially, input videos are decomposed into individual frames at a
uniform frame rate, thereby preserving temporal coherence essential for
detecting sequential anomalies. The BlazeFace model is then employed to
perform fast and efficient face detection, generating precise bounding boxes
for each detected face within the frames. Subsequently, MediaPipe Face
Mesh is applied to these detected faces to extract dense 3D facial
landmarks. This step significantly enhances the granularity of spatial feature
representation, improving the identification of subtle facial deformations
introduced by deepfake manipulations. The integration of BlazeFace and
MediaPipe in a unified pipeline ensures both speed and precision in
preprocessing, laying a strong foundation for effective feature extraction
and subsequent deepfake detection.

3.1.1. Video Frames. Video frames are the basic units for analyzing
spatial and temporal features in deepfake detection. A video is first
converted into individual frames at a consistent frame rate (typically 30 fps)
to preserve temporal coherence, allowing the framework to detect anomalies
such as unnatural facial expressions, inconsistent head movements, or
temporal flickering. Each frame is then processed using the BlazeFace
model, which accurately localizes faces by generating precise bounding
boxes, providing a reliable foundation for subsequent manipulation
detection.

3.1.2. BlazeFace. To accurately isolate face regions from individual
video frames, the proposed framework employs BlazeFace, a real-time
neural network-based face detector optimized for mobile and embedded
Graphics Processing Units (GPUs). It is designed to deliver high inference
speeds while maintaining accurate face localization and keypoint
estimation. This makes it well-suited for handling extensive video datasets
in deepfake detection applications.

BlazeFace uses depthwise separable convolution with 5 X 5 kernels
to achieve a larger receptive field at low computational cost. The network
architecture is built using BlazeBlocks and Double BlazeBlocks, which
preserve spatial resolution while minimizing computational overhead. The
model operates on input frames of size 128x128x3, and outputs both



bounding boxes and six key facial landmarks, including positions of the
eyes, nose, ears, and mouth center. Specifically, the output tensors are:

- Bounding boxes: [N, 4], where N is the number of faces
detected, and 4 represents the coordinates (X,in»> Ymin> Xmax » Ymax) Of €ach
face.

- Facial landmarks: [N, 6, 2], where 6 corresponds to the six
keypoints and 2 represents (x,y) coordinates normalized relative to the
input frame.

Figure 2 illustrates the structure of the BlazeBlock and Double
BlazeBlock components.
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Fig. 2. Structure of BlazeBlock and Double BlazeBlock

Let I € R¥*W*3 denote an input video frame. The model generates a
set of anchor boxes {a, }X_,. For each anchor, the network predicts:
Bounding box offsets:

(A X, A Yo, A Wi, A hy), (1

where A x; denotes the horizontal offset of the bounding box center for
anchor k; A y, denotes the vertical offset of the bounding box center for
anchor k; A wy denotes the logarithmic scaling factor for the width of
bounding box k; A hy, denotes logarithmic scaling factor for the height of

bounding box k; k represents the index of the anchor box among total
anchors.

Keypoint coordinates:

{Pui}i=1 € R?, 2)



where Py; denotes the 2D coordinate (x, y) of the i*" facial landmark for
anchor k; and R? indicates each key point represented in 2D space.
The final bounding box by, is computed as:

X = Xi A X W Vi = Vi A i b, 3)

where x; and y;, denote the refined center coordinates of bounding box k;
xi and yg denote the anchor box center coordinates for anchor k; wy and
hi denote the anchor box width and height; and A x;, and A y, denote the
predicted offsets.

wy = wi.exp(A wy), hy, = hi.exp(A hy), @)

where wy, and hy, denote the refined width and height of bounding box k;
w¢, and hf denote the anchor width and height; A wy, and A hy, predicted
scaling factors; and exp(.)denotes the exponential function to ensure
positive dimensions.

The facial keypoints are then computed as:

Pr; = Pyi- (Wi, hye) + (i, Vi) (%)

where Py; denotes the refined location of landmark i for anchor k; Py;
represent the normalized keypoint coordinates; (wy,h;) represent the
bounding box size; and (xp, y;,) represent the bounding box center.

To reduce temporal jitter across frames, a common artifact in
deepfake content, BlazeFace implements a weighted blending strategy in
place of traditional Non-Maximum Suppression (NMS). The final refined
bounding box is computed as:

Yken Wi by
byina = 2ot Tk (6)
final Yken W

where wy, is the confidence score; bginq denotes the final bounding box
after blending; and N is the set of overlapping anchor boxes. This enhances
frame-to-frame consistency, helping the model distinguish genuine
manipulations from jitter-induced artifacts, thereby increasing the reliability
of detection.

3.1.3. MediaPipe Face Mesh. After detecting the face regions using
BlazeFace, the framework integrates MediaPipe Face Mesh to extract a
dense set of 3D facial landmarks. This enables the detection of unnatural



facial geometry and behavioral inconsistencies, which are often indicative
of deepfake manipulations.

MediaPipe Face Mesh predicts a total of 468 3D facial landmarks,
represented as:

L = {(x;, y;, 2)}{S} € R**8*3, (7)

where L denotes the set of 3D landmark coordinates; and x;, y;, Z denote the
coordinates of landmark i.

These landmarks span the entire facial geometry, including contours,
lips, nose, eyes, eyebrows, jawline, and forehead. The input to MediaPipe
Face Mesh is the face crop provided by BlazeFace, resized and normalized
to a tensor of size 128x128%3, consistent with the BlazeFace output
bounding box region. This normalization removes scale and rotation
variances, ensuring consistent landmark extraction across frames. The
extracted landmarks are utilized to compute both geometric and behavioral
features, which are highly sensitive to subtle facial manipulations
introduced by generative adversarial networks (GANs). Several key features
derived from these landmarks include:

Eye Aspect Ratio (EAR) for blink analysis:

|IL2 = Lel| + I1L3 — Ls]|
2.[|Ly = Lyl

EAR = (3

This ratio helps monitor blinking behavior and can reveal synthetic
inconsistencies.

Mouth Aspect Ratio (MAR) is used to identify lip-sync anomalies,
which indicative of poor audio-visual alignment in deepfakes.

Facial symmetry deviation is calculated by comparing corresponding
landmarks on the left and right sides of the face to assess asymmetry
introduced by manipulation.

Temporal displacement of keypoints, which captures jitter or
abnormal warping across consecutive frames, is a common artifact in
manipulated videos.

The combined BlazeFace + MediaPipe Face Mesh pipeline
establishes a robust preprocessing foundation by ensuring precise face
localization and dense landmark tracking, even under adverse conditions
such as low lighting, occlusion, or blurred resolution. By analyzing
temporal coherence across frames, the framework detects subtle geometric
distortions, expression inconsistencies, and behavioral anomalies, traits



rarely found in authentic content. Furthermore, it supports high-resolution
tracking of facial dynamics, such as eye blinking, lip movement, and overall
facial expression behavior, thereby improving deepfake detection reliability.

3.2. XceptionCapsule-BiLSTM Net. Existing deepfake detection
models often analyze individual frames, missing temporal cues such as head
movements or inconsistent facial expressions, which limits their performance
on subtle manipulations. To address this, we propose the XceptionCapsule-
BiLSTM Net, a hybrid architecture that processes sequences of N consecutive
frames (16 in our experiments) to capture both spatial and temporal
dependencies such as eye blinks, lip-syncing, and head motion. The model
integrates Xception for high-resolution spatial feature extraction and CapsNet
to preserve spatial hierarchies and inter-feature relationships. To further
enhance temporal modeling, a BiLSTM layer is incorporated after the
Capsule layer. The BIiLSTM learns sequential dependencies across
consecutive frame embeddings, enabling the network to recognize motion
continuity and detect temporal inconsistencies such as abrupt facial transitions
or unnatural movements. This addition ensures that the model processes video
segments as coherent temporal sequences rather than isolated frames. Key
layers include GAP for feature reduction, Flatten and Fully Connected layers
for high-level representation, and a Sigmoid activation for binary
classification. By combining spatial hierarchy learning (Xception + CapsNet)
with temporal dependency modeling (BiLSTM), the proposed architecture
significantly enhances robustness, accuracy, and generalization in detecting
both obvious and subtle deepfakes in real-world scenarios.

3.2.1. Xception Model. The Xception model is particularly effective
for deepfake detection due to its superior capability in spatial feature
extraction. Unlike conventional CNNs, which perform standard convolution
over both spatial and channel dimensions simultaneously, Xception employs
depthwise separable convolutions, dividing the process into two stages:
depthwise convolution individually processes each input channel using
separate filters, while pointwise convolution uses 1x1 convolutions to
merge the results from the depthwise operation. This decomposition results
in significant computational efficiency and a reduction in the number of
learnable parameters, while still maintaining the capacity to capture
essential visual features. In the proposed framework, Xception processes
RGB face crops extracted by BlazeFace, with an input tensor of size
128 x 128 x 3. The network outputs feature maps of shape [batch size, h,
w, c], where h, w, and ¢ correspond to the height, width, and number of
channels of the final convolutional layer. These feature maps retain rich
spatial information, enabling the detection of subtle artifacts introduced by



generative models, such as slight geometric distortions, texture
inconsistencies, and skin tone mismatches.

The model's enhanced spatial sensitivity enables it to effectively
distinguish authentic faces from manipulated ones, even in high-resolution
or minimally altered fake videos. The architectural pipeline of the Xception
model is illustrated in Figure 3, showcasing its layered depthwise separable
convolutional structure optimized for detailed pattern recognition in facial
analysis.
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Fig. 3. Architecture of the Xception model

3.2.2. Capsule Model. The CapsNet is designed to overcome the
limitations of traditional CNNs, particularly their inability to preserve
spatial hierarchies and capture part-whole relationships in visual data.
Unlike CNNs, which use scalar activations and pooling operations that often
discard spatial information, CapsNet represents features as vectors, thereby
encoding both the presence and pose (e.g.,, position, orientation,
deformation) of detected entities.

The core building block of CapsNet is the capsule, a group of
neurons whose activity vector u; € R% encodes the instantiation parameters



of a specific object or object part. Capsules are organized hierarchically
such that higher-level capsules model increasingly complex entities by
aggregating information from lower-level capsules.

To support this hierarchy, CapsNet introduces a dynamic routing
mechanism between layers. Each capsule i in the primary capsule layer
predicts the output of capsule j in the next layer using a learned
transformation matrix W;;. The predicted output is computed as:

) = Wi )

Here, #l); is the prediction vector from capsule i to capsule j, and
u; is the output vector of capsule i. These predictions are aggregated into a
total input S; for capsule j through a weighted sum of the predictions:

5= eyl (10)

i

Here, c;; are the coupling coefficients that determine the contribution
of capsule i to capsule j, and #y); is the predicted output from capsule i. These
coefficients are computed through a routing-by-agreement mechanism, using
a softmax function over initial logits b;;, which are iteratively updated:

o = eXp(bij) (an
Y Brexp(by)

The final output of capsule j, denoted vj, is computed by applying a
nonlinear function to s;. This function ensures that short vectors are shrunk
to nearly zero length (representing absence), while longer vectors are scaled
to a length slightly below 1 (representing its presence), without affecting
their orientation:

2
I Sj II Sj

v = . : 12
I Tl s 12 TS, 12 (12)

where the length || v; |l represents the probability that the entity modeled by
capsule j exists, and the direction of v; encodes its pose and || s; |l is the
magnitude of input vector. This structure enables CapsNet to retain spatial
hierarchies and model complex visual relationships, making it particularly



effective for detecting subtle, hierarchical inconsistencies inherent in
deepfake content. The architecture of the CapsNet is illustrated in Figure 4.
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Fig. 4. Structure of CapsNet

This mechanism enables CapsNet to retain detailed spatial
relationships and generalize effectively across transformations such as
rotation and scaling. Consequently, CapsNet proves particularly effective in
tasks requiring precise localization, pose estimation, and structure-
preserving representations, such as facial analysis, medical imaging, and
deepfake detection. The proposed XceptionCapsule Net architecture
integrates the powerful spatial feature extraction capabilities of the Xception
network with the hierarchical modeling strength of CapsNet. By leveraging
key architectural components such as Global Average Pooling, Flatten,
Dense layers, Capsule layers, and a final Sigmoid activation function, the
model robustly captures subtle visual artifacts and spatial dependencies.
This well-structured design significantly improves the precision and
reliability of distinguishing between real and fake videos.

3.2.3. BILSTM Layer. To capture temporal dependencies across
consecutive video frames, a BILSTM layer is introduced after the Capsule
layer. While the Capsule Network effectively models spatial hierarchies and
part—whole relationships, it does not account for sequential variations in
motion or expression. The BiLSTM addresses this by processing sequential
capsule feature embeddings from consecutive frames, learning both forward
and backward temporal correlations. This enables the model to capture
motion dynamics such as eye blinking, lip movement, and head rotation
over time, patterns that are often inconsistent in manipulated content.
Mathematically, if v; represents the capsule output at time t, the BILSTM
learns temporal features as:



h; = LSTM; (v, hi_y), (13)

he = LSTM, (v, hery), (14)
e = [Fs . (15)

This bidirectional formulation allows the model to analyze both past
and future contextual dependencies, ensuring a holistic understanding of
temporal behavior across frame sequences. The BiLSTM output is
subsequently passed to the Global Average Pooling (GAP) layer for
dimensionality reduction and further classification processing.

3.2.4. GAP Layer. The GAP layer replaces traditional fully
connected layers by computing the average of each feature map in the final
convolutional layer. For a feature map F € R"™", GAP is computed as:

GAP(F) =$iiﬂj, (16)

where F denotes the feature map, h.w is the height and width of the feature
map, and F;; is the value at pixel (i,y). This significantly reduces the
number of trainable parameters, thereby minimizing overfitting and
preserving global contextual information.

3.2.5. Flatten Layer. Following GAP, the flatten layer reshapes the
output into a one-dimensional vector. It transforms the tensor from shape
(batchg;,,, channels, 1,1) into (batchg;,, channels), serving as a bridge
between convolutional feature extractors and subsequent high-level
reasoning layers.

3.2.6. Fully Connected (Dense) Layer. The dense layer functions as
a fully connected neural layer, responsible for learning complex feature
representations. It performs a linear transformation followed by a non-linear
activation:

y =f(Wx +b), (17)
where x is the input vector, W is the weight matrix, b is the bias vector, and

f 1is an activation function. This layer enhances feature abstraction and
captures semantic information crucial for distinguishing deepfakes.



3.2.7. Sigmoid Activation Layer. The final layer employs the
sigmoid activation function o(x) for binary classification:

1

— 18
1+e™* (18)

o(x) =

This produces a probability score p € [0,1], where: p = 1 - real,
p = 0 - likely fake.

It is compatible with binary cross-entropy loss, making it ideal for
binary classification problems.

Table 2. Input-Output Tensor Flow and Integration with MediaPipe

Stage Input Tensor Output Tensor
BlazeFace 128 x 128 x 3 [N, 4] bounding boxes + [N, 6, 2]
keypoints
MediaPipe Face 128 x 128 x 3 (face 468, 3] landmarks
Mesh crop)
Xception 128 x 128 x 3 [batch size, h, w, c] feature maps

3.2.8. Fusion of MediaPipe Landmarks with XceptionCapsule
Pipeline. The extracted 3D facial landmarks from MediaPipe Face Mesh are
used as auxiliary behavioral and geometric features. Each frame’s landmark
vector L = [X1, V1,21, X2, Y2, Z2, -+ » Xa68, Vass Zaes] € R1*%* is normalized
and concatenated with the high-level spatial features F,eR"™W*¢ obtained
from the Xception encoder.

To ensure compatibility in feature space, a linear projection layer
¢ (+) maps landmark features into the same latent dimension:

Fl = ¢(L) = WlL + bl' (19)

where W, € R¥*14%4 and b, € R%. The projected landmark vector is then
fused with the Xception feature tensor using an additive attention-based
blending:

Ffusion = F; + (1_0()- £, (20)

where «€ [0,1] controls the contribution of spatial and landmark features,
optimized during training. The fused representation Fryi0r is passed to the
CapsNet module, enabling the model to jointly reason about spatial,
geometric, and behavioral cues. This process enhances sensitivity to micro-



expressions, eye-blink patterns, and lip-sync deviations that are often
missed by frame-only CNNs.

4. Results and Discussion. This section presents the evaluation of the
proposed deep learning model for deepfake detection in facial videos. By
leveraging spatial and temporal features in facial expressions and movements,
the model accurately distinguishes authentic from manipulated content. The
approach achieves high detection performance while maintaining
interpretability and reliability — essential for real-world applications such as
media forensics, digital trust frameworks, and security systems.

4.1. Experimental Setup and Configuration. The proposed
deepfake detection framework was implemented in Python 3.10 using
Jupyter Notebook. TensorFlow was used for model development and
training, while Scikit-learn handled data preprocessing, analysis, and
evaluation. Experiments were conducted on a 64-bit Windows 10 system
with a 7th-generation Intel Core i7 (2.8 GHz). Datasets were split 80/20 for
training and testing, providing a stable platform for evaluating complex
architectures such as XceptionCapsule Net.

4.2. Dataset Description.

Dataset 1: FaceForensics++ (FF++): The FF++ dataset [33] serves
as a comprehensive and widely adopted benchmark for deepfake detection
research. It comprises approximately 1,000 real video samples sourced from
YouTube, each containing clear, stable, and front-facing facial recordings
suitable for manipulation. From these original videos, over 4,000
manipulated videos were synthesized using four distinct facial manipulation
techniques: DeepFakes (autoencoder-based face replacement), FaceSwap
(graphics-based replacement), Face2Face (real-time facial reenactment),
and NeuralTextures (neural rendering-based synthesis). A notable strength
of FF++ is its provision of multiple compression settings, including raw
(uncompressed), high-quality (HQ), and low-quality (LQ). This simulates
real-world video scenarios, such as those encountered on social media
platforms. Additionally, FF++ includes bounding box annotations and, in
some versions, manipulated region masks, thereby supporting extended
tasks such as forgery localization in addition to classification. With separate
training, validation, and test splits, FF++ provides a standardized and
reproducible benchmark for evaluating deepfake detection models under
varying levels of manipulation complexity and video quality.

Dataset 2: Celeb-DF(v2). The Celeb-DF (v2) dataset [34], short for
Celebrity DeepFake Dataset, addresses the limitations found in earlier
datasets by offering more realistic and visually coherent deepfake videos. It
consists of approximately 590 authentic video clips featuring 59 public
figures, sourced from YouTube interviews that capture a diverse range of



head poses, facial expressions, and lighting conditions. A total of 5,639
deepfake videos were produced from these real videos using advanced
deepfake synthesis methods, which significantly reduce visual artifacts such
as lip mismatches, flickering, and facial warping. Unlike FF++, Celeb-DF
(v2) focuses solely on high-quality deepfakes without introducing artificial
compression, making it more representative of real-world high-fidelity
forgeries. Although it lacks mask or manipulation annotations, its high
visual fidelity and absence of synthetic glitches make it a valuable dataset
for testing the generalization capability and robustness of detection models
trained on noisier or lower-quality datasets. Together, FF++ and Celeb-DF
(v2) provide complementary testbeds, one offering variety in manipulation
and compression, and the other emphasizing realism and subtlety, making
them suitable for the comprehensive evaluation of deepfake detection
frameworks.

4.3. Hyperparameter Configuration. The training process was
carefully configured using a standard set of hyperparameters to optimize
model performance while mitigating overfitting and ensuring
generalizability. The key hyperparameter settings used in the proposed
framework are summarized in Table 2.

Table 2. Hyperparameter configuration

Hyperparameter Value
Optimizer Adam
Learning Rate 0.001
Batch Size 32
Epochs 30
Learning rate Scheduler ReduceLROnPlateau
Regularization L2
Dropout 0.5
Validation split 5-fold

The Adam optimizer [35] was selected for its ability to adapt the
learning rate during training. A learning rate scheduler was employed to
adjust the rate dynamically in response to changes in validation loss. L2
regularization and dropout [36] were applied to reduce overfitting. A 5-fold
cross-validation strategy was used to ensure robust performance estimation
and evaluate the model’s generalization across different subsets of the data.

4.4.Results and Analysis of the Preprocessing Stage. The
preprocessing stage is crucial for ensuring accurate and reliable deepfake
detection. Input videos are first decomposed into frames at uniform intervals



to preserve temporal coherence. BlazeFace detects faces under varying
conditions, and MediaPipe Face Mesh extracts detailed facial landmarks for
precise alignment. This ensures high-quality, geometrically consistent facial
regions are passed to the XceptionCapsule Net, allowing the model to focus
on subtle manipulations such as wunnatural warping, inconsistent
expressions, and temporal irregularities. Figures 5-8 illustrate successful
face detection and alignment on the FF++ and Celeb-DF (v2) datasets,
demonstrating the effectiveness of the preprocessing pipeline.

Original frames BlazeFace FaceMesh

224%224%*3 128%128%*3
Fig. 5. Preprocessing result of BlazeFace and FaceMesh of fake videos for FF++
dataset

Original frames BlazeFace FaceMesh
| Wa |

204¥224%3 128%128%3 4683
Fig. 6. Preprocessing result of BlazeFace and FaceMesh of real videos for FF++
dataset
Original frames BlazeFace FaceMesh

224%224%*3 128%128%*3 468*3
Fig. 7. Preprocessing result of BlazeFace and FaceMesh of fake videos for Celeb-DF
(v2) dataset



Original frames BlazeFace FaceMesh

224%*224%3 128*128*3 468*3
Fig. 8. Preprocessing result of BlazeFace and FaceMesh of real videos for Celeb-DF
(v2) dataset

4.5. Performance Metrics. Performance metrics play a crucial role
in assessing the effectiveness of deepfake detection models. A
comprehensive set of metrics is used to quantify how well the model
differentiates between authentic and manipulated content. These include
classification metrics such as Accuracy, Precision, Recall, F1-Score, and
Specificity. Collectively, these metrics provide detailed insights into the
model’s prediction quality, robustness, and reliability under real-world
conditions.

The metrics used are defined as follows:

i.  Accuracy. The proportion of correctly classified samples (real
or fake) among all samples:

TP+TN

A = : 21
CCUraCY = TP+ TN + FP + FN @1

ii.  Precision. The proportion of samples predicted as fake that are
truly fake:

TP
ision = ——. 22
Precision TP+ FP (22)

iii.  Recall. The proportion of actual fake samples that are correctly
identified:

TP
[ — 23
Recall TPTFN (23)

iv.  FI-Score. The harmonic mean of precision and recall, useful
for imbalanced datasets:



2. (Precision. Recall)
- = 24
F1=Score Precision + Recall @4

v.  Specificity. The proportion of real (negative class) samples
correctly identified:

TN
Specificity = ———. (25)
pecificity = myFp

vi. Area under the ROC Curve (AUC). This metric is typically
used with the ROC (Receiver Operating Characteristic) curve to evaluate
binary classifiers. It measures the model’s ability to distinguish between the
two classes (e.g., real vs. fake). Mathematically, it can be expressed as
follows:

1
AUC = f TPR(FPR)d(FPR), (26)
0

where TPR and FPR are the True Positive Rate and False Positive Rate at
threshold i, and n is the number of thresholds used.

4.5.1. Cross-Validation Evaluation. To ensure robustness and
generalization, a 5-fold cross-validation strategy is adopted. The dataset is
partitioned into five equally sized subsets (folds). In each iteration, four
folds are used for training, and the remaining fold is used for testing. This
process is repeated five times, ensuring each fold serves exactly once as a
test set. The final performance metrics are computed as the average of
results across all folds, thereby reducing both variance and bias in model
evaluation. This cross-validation approach is particularly valuable for
deepfake detection, where data heterogeneity (in lighting, pose, and
manipulation type) can influence model behavior. Table 3 presents the
detailed results obtained from the 5-fold cross-validation on the FF++
dataset and Celeb-DF (v2) datasets, respectively. Additionally, Figure 9
illustrates the training and validation accuracy and loss curves across the
five folds for the FF++ dataset, providing insights into model convergence
and overfitting tendencies.
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Table 2. Cross-Validation Performance of the Proposed Model on FF++ and Celeb-
DF (v2) Datasets
Mean + 95%

Datasets | Metrics | Fold 1| Fold 2 | Fold 3 | Fold 4 | Fold 5 | Average cI

FF++ Accuracy [0.9667[0.97710.9510]0.97080.9708 | 0.9673 |0.9673 + 0.009
Precision  [0.9737/0.9718]0.9456]0.9733]0.9753[0.9679 |0.9679 £ 0.011
Recall 0.9612[0.98370.9591[0.9693 [ 0.9673|0.9681 |0.9681 £ 0.009
F1-score 0.967110.9777]0.9523|0.9713]0.9713]0.9679 10.9679 + 0.010
Specificity |0.972410.9703 | 0.9427|0.9724|0.9745]0.9665 | 0.9665 + 0.012
AUC 0.9978[0.99620.9938 | 0.9957[0.9970|0.9961 |0.9961 £ 0.001
Celeb- |Accuracy |0.9902]0.9872(0.9931[0.9921[0.9843|0.9894 |0.9894 + 0.003
DF v2 Precision [ 0.9987[0.97780.9906]0.994310.992310.9907 |0.9907 + 0.008
Recall 0.99240.99810.9962 1 0.9905 [ 0.977310.9909 |0.9909 £ 0.007
F1-score 0.9905[0.98780.9934 | 0.9924 | 0.9848 | 0.9898 | 0.9898 + 0.005
Specificity |0.9877]0.9754]0.9897|0.9938|0.99180.9877 |0.9877 +0.007
AUC 0.999810.999210.999910.9992 | 0.9989 |1 0.9994 |0.9994 £ 0.001

Table 2 presents the 5-fold cross-validation results of the proposed
deepfake detection model on the FF++ and Celeb-DF (v2) datasets,
including average values and 95% confidence intervals. For FF++, the
model achieved an average accuracy of 96.73% with a mean AUC of
0.9961, demonstrating strong discriminative power. Precision, recall, and
Fl-score were consistently high across all folds, with mean values of
96.79%, 96.81%, and 96.79%, respectively. Similarly, on the Celeb-DF (v2)
dataset, the model achieved a mean accuracy of 98.94% and an AUC of
0.9994, with precision, recall, and Fl-score all above 98.9%, indicating
highly reliable performance. The low 95% confidence intervals across all
metrics highlight the model’s robustness and consistent performance across
different folds, confirming its generalization capability across diverse
datasets and challenging deepfake scenarios. Figure 10 represents the cross-
validation training and validation accuracy and loss for Celeb-DF (v2)



dataset, further corroborating the model's stable performance across
different datasets and data distributions.
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Fig. 10. Cross-validation for the accuracy and loss for Celeb-DF (v2) dataset

Figures 11 and 12 illustrate the training and validation accuracy and
loss curves for the FF++ and Celeb-DF (v2) datasets, respectively,
providing visual confirmation of the model’s convergence and
generalization effectiveness across both datasets.

L0091 — Train Accuracy ! —— Train Loss
~ =+ Val Accuracy 023 T -=- Val Loss
V
'
038 0.20 i
r i yoss
8 036 @
5 k:
o
3 0.10
0.94
0.05
092
.00
0 10 20 0 % F)
[] 10 2 0 40 0 Epochs
Fig. 11. Training and validation accuracy and loss of dataset 1
w40
1000 — Train Loss
a3s ~ - val Loss
0975
a0
0950
25
t 0925
£ R 020
£ oso0 3
i 0as
075
010
oss0
— Train Accuracy oo
025 - =+ Val Accuracy a0
o 1w 0 E 0 50 o 10 0 30 “0 50
Epochs

Epochs
Fig. 12. Training and validation accuracy and loss of dataset 2



4.5.2. Confusion Matrix. A confusion matrix serves as a valuable tool
for assessing the performance of classification models, providing an in-depth
comparison between actual and predicted class labels. It categorizes outcomes
into True Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN), facilitating accurate computation of metrics such as accuracy,
precision, recall, and error rates. This visualization is especially useful for
evaluating how well a model differentiates between classes, making it highly
effective in binary classification scenarios such as deepfake detection.

Figure 13 presents the confusion matrices of the Dataset 1 and the
Dataset 2.
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Fig. 13. Confusion Matrix: a) dataset 1, b) dataset 2

For Dataset 1(a), the model accurately classified 482 real and 527 fake
instances. The model misclassified only 5 genuine instances as fake and
incorrectly identified 2 manipulated samples as authentic. This distribution
reflects excellent model performance with minimal misclassification, indicating
high precision, recall, and overall robustness in detecting facial manipulations.

For Dataset 2(b), the model correctly identified 458 real and 471
fake videos. However, it misclassified 13 real instances as fake and 19 fake
instances as real, reflecting a slightly higher error rate compared to
Dataset 1. Despite this, the matrix exhibits strong diagonal dominance,
affirming the model’s capacity to generalize well to more challenging and
realistic deepfake samples.

Overall, the confusion matrices underscore the model’s high
discriminative power and low error rate, particularly with Dataset 1, while
still maintaining robust performance on the more visually complex Dataset 2.

4.5.3. ROC Curve. The ROC curve illustrates the relationship between
the TPR, also known as sensitivity, and the FPR across varying classification
thresholds. By visualizing this trade-off, the ROC curve provides insight into
the model’s ability to discriminate between classes regardless of the decision
threshold. A key metric derived from the ROC curve is the AUC, which offers a



single scalar value to summarize performance. An AUC value closer to 1.0
indicates a high degree of separability between the positive and negative classes,
signifying excellent classification capability. Figure 14 shows the ROC curves

for (a) FF++ dataset and (b) Celeb-DF (v2) dataset.
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Fig. 14. ROC curve for: a) FF++ dataset, b) Celeb-DF (v2) dataset

The ROC curves, averaged across the 5-fold cross-validation,
demonstrate the model’s exceptional classification ability. For the FF++
dataset (a), the model achieved an average AUC of 0.9961, indicating a very
high true positive rate with a minimal false positive rate across all folds. For
the Celeb-DF (v2) dataset (b), the model attained an average AUC of 0.9994,
reflecting near-perfect separability between real and manipulated content.
These ROC curves, based on averaged cross-validation results, reaffirm the



high discriminative power and robustness of the proposed framework across
different datasets, diverse conditions, and various manipulation techniques.

4.6. Comparative Analysis. This section presents a comprehensive
comparative analysis of the proposed deepfake detection framework against
a range of existing state-of-the-art approaches. The evaluation considers two
primary performance metrics such as Accuracy and AUC measured across
two benchmark datasets: FF++ and Celeb-DF (v2). The compared methods
include both conventional CNN models (e.g., VGGI16, InceptionV3,
ResNet50, MobileNetV2, EfficientNet variants) and advanced architectures
that employ hybrid learning, attention, and frequency-domain features such
as MesoNet, F3-Net, RFM, GRAM, GFFD, SPSL, M2TR, GocNet, F2-
Trans, BMNet, and Self-Supervised BEiT-HPR. Tables 5 and 6 summarize
the comparative results on both datasets.

Table 5. The overall comparison for the FF++ dataset

FF++ dataset
Methods Accuracy (%) AUC(%)
Face cutout [23] 84 80
DWT [24] 95.13 95.49
ResNet-Swish-BiLSTM [25] 96.23 -
BMNet [26] 95.54 98.60
MLP [27] 98.00 99.94
Self-Supervised BEiT-HPR [28] 83.92 -

ConvNext-PNe [29] 97.78 99.25
CViT2 [30] 94.80 96.00
MesoNet [31] 60.51 74.55
MesoNet-Inc4 [31] 82.15 83.64
Xception [31] 89.84 98.14
EfficientNetb4 [31] 91.89 98.45
F3-Net [31] 93.78 98.55
RFM [31] 91.59 98.37
GRAM [31] 92.21 97.81
GFFD [31] 90.23 98.28
SPSL [31] 91.50 95.32
M2TR [31] 94.08 98.43
GocNet [31] 91.67 97.58
F2-Trans [31] 96.60 99.24
MSTN [31] 95.78 95.78
VGGI6 [32] 78.39 78.00
InceptionV3 [32] 51.00 50.00
ResNet50 [32] 89.67 89.00
Xception [32] 73.86 73.00
MobileNetV2 [32] 76.63 76.00
EfficientNetB7 [32] 83.66 84.00
Proposed 96.67 99.78




Table 6. The overall comparison for the Celeb-DF (v2) dataset

Methods Celeb-DF (v2) dataset
Accuracy (%) AUC(%)

Face cutout [23] 92 93
DWT [24] 95.49 95.49

ResNet-Swish-BiLSTM [25] 78.33 -
BMNet [26] 80.20 75.72
MLP [27] 96.33 97.05

Self-Supervised BEiT-HPR [28] 98.25 -
ConvNext-PNe [29] 97.09 98.99
CViT2 [30] 98.30 99.00
FWA [31] 50.74 55.71
CviT [31] 51.67 60.22
Capsule [31] 63.35 62.70
MesoNet [31] 42.80 52.31
Xception [31] 55.92 67.23
BMNet [31] 80.20 75.72
VGG16 [32] 67.09 68.00
InceptionV3 [32] 55.12 52.00
ResNet50 [32] 67.09 68.00
Xception [32] 59.22 63.00
MobileNetV2 [32] 63.24 65.00
EfficientNetB7 [32] 70.08 69.00
Proposed 99.31 99.99

Footnote: The accuracy and AUC values for the proposed method correspond to the best-
performing fold (Full Model) from the cross-validation experiment, used for fair comparison
with state-of-the-art single-model results. Mean accuracy across all five folds (98.94%) is
reported separately in Table 2, confirming consistent model performance and stable
generalization.

Table 5 illustrates the comparative performance of different deepfake
detection methods on the FF++ dataset. The proposed model achieves the
highest performance, with an accuracy of 96.67% and an AUC of 99.78%,
thereby outperforming both classical CNN-based methods and modern
hybrid architectures. Traditional CNN-based models such as VGG16,
InceptionV3, and MobileNetV2 show moderate performance with
accuracies between 51% and 83%, indicating their limited ability to capture
complex spatial-temporal inconsistencies present in manipulated videos.
Recent architectures such as MesoNet, MesoNet-Inc4, and Xception deliver
improved results but still fall short in generalization across diverse forgery



types. Advanced techniques such as EfficientNetB4, F3-Net, RFM, GRAM,
M2TR, and F2-Trans achieve higher AUC values (above 98%), reflecting
progress in feature extraction and classification precision. However, the
proposed XceptionCapsule-based framework outperforms all competitors,
exhibiting near-perfect discriminative capability as evidenced by its 99.78%
AUC. This superior performance can be attributed to the model’s ability to
jointly capture spatial texture cues and temporal motion inconsistencies,
while the integrated Capsule Network layer enhances dynamic feature
representation and resilience to occlusions and compression artifacts.

Table 6 presents the comparative evaluation of the proposed model
against state-of-the-art methods on the Celeb-DF (v2) dataset, which is
known for its high-quality and challenging deepfake content. The proposed
framework demonstrates remarkable superiority, achieving an accuracy of
99.31% and an AUC of 99.99%, substantially surpassing all prior methods.
While traditional CNN-based detectors such as ResNet50, VGG16, and
InceptionV3 achieve accuracies below 70%, specialized architectures such
as BMNet, CViT, and Capsule Networks also fail to generalize effectively
to complex manipulations, with most methods performing below 81%
accuracy. On the other hand, transformer-based and hybrid learning
approaches, such as ConvNext-PNet, CViT2, and Self-Supervised BEiT-
HPR, show improved performance with accuracies exceeding 97%, yet they
still fall short of the proposed model’s near-perfect results. The performance
of the proposed model on Celeb-DF (v2) confirms its robust generalization
ability and strong resistance to unseen manipulations, even under high-
fidelity synthesis and compression variations.

4.7. Ablation Study. To assess the contribution of each module
within the proposed framework, an ablation experiment was conducted on
the FF++ and Celeb-DF (v2) datasets. The analysis evaluates performance
gains achieved by progressively integrating CapsNet, BlazeFace, MediaPipe
FaceMesh, and the BiLSTM layer with the baseline Xception model.

Table 7 presents the ablation study results illustrating the
contribution of each component integrated into the proposed deepfake
detection framework. The baseline Xception model achieved 94.26%
accuracy and 97.85% AUC, establishing the initial performance.
Incorporating the CapsNet module improved feature representation and
slightly increased overall accuracy to 96.03%, with an AUC of 98.91%.
When combined with BlazeFace, the framework achieved improved face
localization and yielded 96.30% accuracy and 99.23% AUC. The
integration of MediaPipe FaceMesh further enhanced landmark precision,
resulting in 96.50% accuracy and 99.64% AUC. When the BiLSTM layer
was introduced, the model achieved 96.58% accuracy and 99.70% AUC,



confirming its contribution in learning temporal dependencies and motion-
based cues such as blinking, head rotation, and lip synchronization. Finally,
the full model, integrating all modules (Xception, CapsNet, BlazeFace,
MediaPipe Face Mesh, and BiLSTM), attained the highest performance:
96.67% accuracy, 97.31% precision, 96.12% recall, 96.71% F1-score, and
99.78% AU. This demonstrates that the synergistic integration of spatial,
geometric, and temporal components significantly enhances deepfake
detection reliability and robustness.

Table 7. Ablation Study Showing the Impact of Different Model Components on
Deepfake Detection Performance on FF++ Dataset

Model Accuracy Precision | Recall | F1-Score | AUC
(%) (%) (%) (%) (%)

Xception only 94.26 93.40 95.10 94.24 97.85
Xeeption + 96.03 95.71 9580 | 9607 | 9891
CapsNet
XceptionCapsule + | g 3 9695 | 9595 | 9620 | 99.23
BlazeFace only
XceptionCapsule +
MediaPipe 96.50 97.20 96.05 96.40 99.64
FaceMesh
XceptionCapsule +
BiLSTM 96.58 97.08 96.11 96.45 99.70
Full Model 96.67 97.31 96.12 96.71 99.78

On the Celeb-DF (v2) dataset (Table 2), which consists of high-
fidelity and visually coherent deepfakes, the incremental impact of each
module is even more pronounced. The baseline Xception model achieved
92.45% accuracy and 96.72% AUC, struggling to capture subtle
manipulations. The addition of CapsNet improved the detection of fine-
grained artifacts, reaching 95.84% accuracy. Incorporating BlazeFace
enhanced face localization accuracy, achieving an accuracy of over 97%.
MediaPipe Face Mesh further refined geometric consistency, leading to
98.72% accuracy and 99.73% AUC. Introducing the BiLSTM module
significantly improved temporal understanding and motion-based detection,
achieving 99.01% accuracy and 99.88% AUC by modeling frame-to-frame
dependencies and identifying inconsistencies in facial dynamics. The full
model achieved the best results, with 99.31% accuracy and nearly perfect
AUC (99.99%), confirming that combining hierarchical spatial modeling,
geometric precision, and temporal learning substantially improves deepfake
detection performance and generalization in complex real-world scenarios.



Table 8. Ablation Study Showing the Impact of Different Model Components
on Deepfake Detection Performance on Celeb-DF (v2) Dataset

Model Accuracy | Precision | Recall | F1-Score | AUC
(%) (%) (%) (%) (%)

Xception only 92.45 91.62 93.01 92.30 96.72
Xception + CapsNet 95.84 95.41 95.97 95.69 98.44
XeeptionCapsule + 9725 97.10 | 9742 | 9726 | 99.11
BlazeFace only
XceptionCapsule +
MediaPipe FaceMesh 98.72 98.45 98.80 98.62 99.73
XceptionCapsule +
BiLSTM 99.01 98.80 99.25 99.02 99.88
Full Model 99.31 99.06 99.62 99.34 99.99

4.8. Discussion. The proposed Face and Motion-Aware Detection
Framework effectively integrates spatial and temporal features to detect
subtle facial artifacts and motion inconsistencies in deepfakes. BlazeFace
provides robust face localization under varying conditions, and MediaPipe
Face Mesh ensures precise landmark extraction. The XceptionCapsule Net
preserves hierarchical spatial relationships, enabling the detection of fine-
grained forgery cues. Additionally, the integration of a BiLSTM layer
enables the framework to model temporal dependencies by learning motion
dynamics such as blinking, lip movement, and head rotation across
consecutive frames, enhancing temporal consistency in detection. The
experimental results on the FF++ and Celeb-DF (v2) datasets demonstrate
strong generalization, outperforming several state-of-the-art methods.
Ablation studies confirm the contribution of each module, highlighting the
robustness and adaptability of the framework to different manipulation
techniques and challenging conditions such as low resolution, compression,
and subtle manipulations. These characteristics position the framework as a
promising solution for real-world media forensics and content
authentication.

5. Conclusion. This study introduces a robust Face and Motion-
Aware Detection Framework that advances deepfake detection by
combining spatial and temporal analysis. Benchmark evaluations
demonstrate its superior performance and generalization compared to
existing methods. The framework’s design allows adaptability to various
types of manipulations and real-world conditions. For future work, the
framework can be extended to multi-modal analysis by incorporating audio
and textual cues, which would improve the detection of lip-sync or
dialogue-incoherent deepfakes. Further enhancements could include
transformer-based architectures to strengthen temporal modeling. Finally,



testing on in-the-wild deepfake samples and evaluating the feasibility of
real-time deployment on social media or video streaming platforms are
crucial steps for ensuring the practical applicability of the system against
increasingly sophisticated generative manipulations.
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A. PAJDKUB, PABUPAJIXK IT.

MOJEJIb 1JIS1 OBHAPYKEHUS JUIIPENKOB C YYETOM
IMPOCTPAHCTBEHHO-BPEMEHHBIX U IOBEAEHYECKHUX
MIMPU3HAKOB HA OCHOBE OB BE/IUHEHUSA
XCEPTIONCAPSULE

Paoocue  A., Pasupaoxc II. Mogeab pisti o0Hapy:xkeHusi JundeiikoB ¢ y4deToM
NMPOCTPAHCTBEHHO-BPEMEHHBIX H TOBEJIeHYECKHX NMPU3HAKOB HA OCHOBE 00beIHMHEHHS
XceptionCapsule.

AnHoTtamusi. OGHapyxeHue AUNGEHKOB MO-MPEKHEMY MPEICTaBISIET cOO00H Cepbe3HYI0
npobiieMy, TJIaBHBIM 00pa3oM H3-3a KIIFOYCBBIX OTPAHHYCHHII CYIIECTBYIOIIMX METOMOB,
BKJIFOYasl 3aBHCHMOCTb OT aHalW3a OTACIBHBIX KaJIpOB, YSI3BUMOCTH K BHIEO HHU3KOIO
paspellleHiss MM CXKAThIM BHIEO, a TAKKE HECHOCOOHOCTh YJIaBIMBaTh BpPEMEHHbIE
HECOOTBETCTBHA. KpoMme TOro, TpajHIMOHHBIE METOAbI OOHAPYKEHHUS JIUI{ 4acTO AT cOOi
B CJIOXHBIX YCIIOBUSIX, TAaKHX KaK IIOXO€ OCBEIICHHE WM OKKIIO3Hs, a MHOTHE MOJEIH He
CNPAaBIAIOTCA C TOHKMMH MAHUITYJALMSAMH H3-332 HEaJEKBAaTHOTO H3BJICUCHHS HPH3HAKOB
u nepeoOydeHHss Ha OrPAaHMYEHHbIX Habopax [aHHBIX. [T YCTpaHEHHs HEZOCTATKOB
CYIIECTBYIOIMX IIOJXOAOB K OOHAapyKeHHI0 JUI(EHKkoB B JaHHOM HCCJICIOBAHUH
npelyiaraeTcsl CUCTeMa OOHApY)XeHWsl JIMI W JBIKCHUH, KOTOpas OOBEAMHSIET Kak
[POCTPAHCTBEHHYIO, TaK W BpPeMeHHYI0 nH(popMaiuio. Pabora cucteMsl HaunHAETCs C dTamna
NpeBapUTEILHON 00pabOTKH, Ha KOTOPOM BHACOKAJPHI HM3BIEKAIOTCA C (UKCHPOBAHHOM
YacTOTOH a1 oOecredeHusl BpeMEHHOH coriacoBaHHOCTH. OOnacTH juma W JieTajbHbIe
OPHEHTHPBI TOYHO ompeenstoTces ¢ nomoupio BlazeFace u MediaPipe Face Mesh. 3atem st
Mpu3HaKu 00padaThIBAIOTCS ¢ MOMOLIbIO mpeaaraemoii cetn XceptionCapsule Net, koTopast
codeTaeT B ceOe BOBMOXKHOCTH H3BJICUCHHS NIPOCTPAHCTBEHHBIX NMPU3HAKOB Moein Xception
C MepapXMYEeCKUM M YYHMTBHIBAIOIIUM PaKypc HpENCTaBICHUEM KarcynbHbIX cereit (CapsNet),
a TAK)KE BO3MOXHOCTBIO MOZCIMPOBAHUS BPEMCHHBIX 3aBUCUMOCTEH [[BYHAIIPABICHHOTO CIIOS
nonroit kpatkocpouHoil mamsatH (BILSTM). ApxurexTypa BKmodaeT B ceOsi INI0OAJIbHBII
YCPEAHSIONIMIT MyJIHHT, CIIaXHBAaHHE M MOJIHOCBS3HBIC CJIOM C CHIMOMIHON (yHKuHEit
aKkTHBamMK Uil OnHApHOW Kiaccudukanuu. OOMWMPHBIE OLECHKH HA HAaObOpax MaHHBIX
FaceForensicst+ (FF++) m Celeb-DF neMOHCTpUPYIOT BBICOKYIO NPOU3BOINTEINHLHOCTS,
nocturas ToyHoctTH 10 99,31% wm muomaau nox kpuBoir (AUC) 99,99%. PesynbraThb
MOATBEPXKIAIOT 3P (HEKTHBHOCTD, TOYHOCTH M 000OMIAIONIYIO CIIOCOOHOCTH CHCTEMBI ISl BHIEO
Pa3IHYHOrO KayecTBa M CLICHApHEB MaHHITYJISIIIHH.

KnroueBnle cioBa: obnapyxkenue pumndeiiko, XceptionCapsule Net, Face Mesh,
BlazeFace, n3Brne4yeHue JnIEBbIX OPUEHTHPOB, BHICOKPUMUHAINCTHKA.

Jluteparypa

1. O'Toole A.J., Castillo C.D. Face recognition by humans and machines: three
fundamental advances from deep learning. Annual Review of Vision Science. 2021.
vol. 7(1). pp. 543-570.

2. Fola-Rose A., Solomon E., Bryant K., Woubie A. A Systematic Review of Facial
Recognition Methods: Advancements, Applications, and Ethical Dilemmas. IEEE
International Conference on Information Reuse and Integration for Data Science (IRI).
2024. pp. 314-319.

3. EL Fadel N. Facial Recognition Algorithms: A Systematic Literature Review. Journal
of Imaging. 2025. vol. 11(2).



12.

13.

14.

16.

17.

18.

20.

21.

Wu Y. Facial Recognition Technology: College Students’ Perspectives in the US.
Trends in Sociology. 2024. vol. 2(2). pp. 56-69. DOIL: 10.61187/ts.v2i2.119.

Dang M., NguyenT.N. Digital face manipulation creation and detection: A systematic
review. Electronics. 2023. vol. 12(16).

Masood M., Nawaz M., Malik K.M., Javed A., Irtaza A., Malik H. Deepfakes
generation and detection: State-of-the-art, open challenges, countermeasures, and way
forward. Applied intelligence. 2023. vol. 53(4). pp. 3974-4026.

Akkem Y., Biswas S.K., Varanasi A. A comprehensive review of synthetic data
generation in smart farming by using variational autoencoder and generative
adversarial network. Engineering Applications of Artificial Intelligence. 2024.
vol. 131.

Alqgahtani H., Kavakli-Thorne M., Kumar G. Applications of generative adversarial
networks (gans): An updated review. Archives of Computational Methods in
Engineering. 2021. vol. 28. pp. 525-552.

Sun X., Chen S., Yao T., Liu H., Ding S., Ji R. Diffusionfake: Enhancing
generalization in deepfake detection via guided stable diffusion. Advances in Neural
Information Processing Systems. 2024. vol. 37. pp. 101474-101497.

Ge Y., XuJ., Zhao B.N., Joshi N., Itti L., Vineet V. Dall-e for detection: Language-
driven compositional image synthesis for object detection. arXiv preprint
arXiv:2206.09592. 2022.

Zhao H., Liang T., Davari S., Kim D. Synthesizing Reality: Leveraging the Generative
Al-Powered Platform Midjourney for Construction Worker Detection. arXiv preprint
arXiv:2507.13221. 2025.

Zhou K.Z., Choudhry A., Gumusel E., Sanfilippo M.R. Sora is Incredible and Scary":
Emerging Governance Challenges of Text-to-Video Generative Al Models. arXiv
preprint arXiv:2406.11859. 2024.

Qadir A., Mahum R., El-Meligy M.A., Ragab A.E., AlSalman A., Awais M. An
efficient deepfake video detection using robust deep learning. Heliyon, 2024. vol.
10(5).

Bhattacharyya C., Wang H., Zhang F., Kim S., Zhu X. Diffusion deepfake. arXiv
preprint arXiv:2404.01579. 2024.

Al-Khazraji S.H., Saleh H.H., Khalid A.I, Mishkhal L.A. Impact of deepfake
technology on social media: Detection, misinformation and societal implications. The
Eurasia Proceedings of Science Technology Engineering and Mathematics. 2023.
vol. 23. pp. 429-441.

Jbara W.A., Hussein N.A.-H.K., Soud J.H. Deepfake Detection in Video and Audio
Clips: A Comprehensive Survey and Analysis. Mesopotamian Journal
of CyberSecurity. 2024. vol. 4(3). pp. 233-250.

Arya M., Goyal U., Chawla S. A Study on Deep Fake Face Detection Techniques. 3rd
International Conference on Applied Artificial Intelligence and Computing (ICAAIC).
IEEE, 2024. pp. 459-466.

Rajeev A., Raviraj P. An insightful analysis of digital forensics effects on networks
and multimedia applications. SN Computer Science. 2023. vol. 4(2).

Sheremet O.1., Sadovoi O.V., Harshanov D.V., Kovalchuk S., Sheremet K.S., Sokhina
Y.V. Efficient face detection and replacement in the creation of simple fake videos.
Applied Aspects of Information Technology. 2023. vol. 6(3). pp. 286-303.

Wang J., Yuan S., Lu T., Zhao H., Zhao Y. Video-based real-time monitoring of
engagement in E-learning using MediaPipe through multi-feature analysis. Expert
Systems with Applications. 2025. vol. 288. DOI: 10.1016/j.eswa.2025.128239.
Chollet F. Xception: Deep learning with depthwise separable convolutions, in:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
pp. 1251-1258.



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Joshi D., Kashyap A., Arora P. CapsNet-Based Deep Learning Approach for Robust
Image Forgery Detection. 10th International Conference on Signal Processing and
Communication (ICSC). IEEE, 2025. pp. 308-314.

Alanazi F., Ushaw G., Morgan G. Improving detection of deepfakes through facial
region analysis in images. Electronics. 2024. vol. 13(D).
DOI: 10.3390/electronics13010126.

Hasanaath A.A., Lugman H., Katib R., Anwar S. FSBI: Deepfake detection with
frequency enhanced self-blended images. Image and Vision Computing. 2025.
vol. 154.

Qadir A., Mahum R., El-Meligy M.A., Ragab A.E., AlSalman A., Awais M. An
efficient deepfake video detection using robust deep learning. Heliyon, 2024.
vol. 10(5).

Xiong D., Wen Z., Zhang C., Ren D., Li W. BMNet: Enhancing Deepfake Detection
through BiLSTM and Multi-Head Self-Attention Mechanism. IEEE Access. 2025.
vol. 13. pp. 21547-21556. DOIL: 10.1109/ACCESS.2025.3533653.

Naskar G., Mohiuddin S., Malakar S., Cuevas E., Sarkar R. Deepfake detection using
deep feature stacking and meta-learning. Heliyon. 2024. vol. 10(4).

Al Redhaei A., Fraihat S., Al-Betar M.A. A self-supervised BEiT model with a novel
hierarchical patchReducer for efficient facial deepfake detection. Artificial
Intelligence Review. 2025. vol. 58(9).

Ilyas H., Javed A., Malik K.M. ConvNext-PNet: An interpretable and explainable
deep-learning model for deepfakes detection. IEEE International Joint Conference
on Biometrics (IJCB). 2024. pp. 1-9.

Deressa D.W., Lambert P., Van Wallendael G., Atnafu S., Mareen H. Improved
Deepfake Video Detection Using Convolutional Vision Transformer. IEEE Gaming,
Entertainment, and Media Conference (GEM). 2024. pp. 1-6.

Gong R., He R., Zhang, D., Sangaiah A.K., Alenazi M.J. Robust face forgery
detection integrating local texture and global texture information. EURASIP Journal
on Information Security. 2025(1). vol. 3.

Saikia P., Dholaria D., Yadav P., Patel V., Roy M. A hybrid CNN-LSTM model for
video deepfake detection by leveraging optical flow features. International joint
conference on neural networks (IICNN). IEEE, 2022. pp. 1-7.

Rossler A., Cozzolino D., Verdoliva L., Riess C., Thies J., et al., Faceforensics: A
Large-Scale Video Dataset for Forgery Detection in Human Faces. arXiv preprint
arXiv:1803.09179. 2018.

Li Y., Yang X., Sun P., Qi H., Lyu S. Celeb-df: A largescale challenging dataset for
deepfake forensics. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020. pp. 3207-3216.

Akbar AF., Ayu P.D.W., Hostiadi D.P. Performance Analysis of Deep Learning
Architectures in Classifying Fake and Real Images. JUITA: Jurnal Informatika. 2025.
pp. 167-176.

Khan S.B., Gupta M., Gopinathan B., Thyluru RamaKrishna M., Sarace M., Mashat
A., Almusharraf A. DeepFake Detection: Evaluating the Performance of
EfficientNetV2-B2 on Real vs. Fake Image Classification. IET Image Processing.
2025. vol. 19(1).

PapxuB AiimBapusi — cTyzneHT, VmkeHepHbI HHCTUTYT IS JKeHITUH B Maiicype. O61acTs
Hay4YHBIX HHTEpecoB: oOHapyxeHue aundeiiko, XceptionCapsule Net, Face Mesh, BlazeFace,
M3BIIEUCHHE JIMIEBBIX OPHEHTHPOB, BUICOKPUMHHAIUCTUKA. UNCIIO0 HAYYHBIX ITyOIMKALMA —
1. aishwaryarajeev654@gmail.com; KRS Poax, Meraramm, 570016, Kapnaraka, Maiicyp,
Wupus; p.r.: +91(0821)258-1305.



I1. PaBupam:xk — mpocdeccop, MmkeHepHBIII HHCTUTYT AU JkeHIIUH B Maiicype. O6macTs
Hay4YHBIX HHTEpecoB: oOHapyxeHue aundeiikos, XceptionCapsule Net, Face Mesh, BlazeFace,
U3BJICUCHHC JIMIIEBBIX OPHEHTUPOB, BHICOKPHMHUHAINCTHKA, 00paboTKa n300paxeHuit. Yucmo
HAay4YHBIX IOyOnukamumid — 75. ravirajp654@gmail.com; KRS Poax, Meraramm, 570016,
Kapnaraka, Maiicyp, Unaus; p.1.: +91(0821)258-1305.



	Table 1. Overview of the literature review
	Table 2. Hyperparameter configuration
	Table 5. The overall comparison for the FF++ dataset
	Table 6. The overall comparison for the Celeb-DF (v2) dataset
	Table 7. Ablation Study Showing the Impact of Different Model Components on Deepfake Detection Performance on FF++ Dataset
	On the Celeb-DF (v2) dataset (Table 2), which consists of high-fidelity and visually coherent deepfakes, the incremental impact of each module is even more pronounced. The baseline Xception model achieved 92.45% accuracy and 96.72% AUC, struggling to ...
	Table 8. Ablation Study Showing the Impact of Different Model Components on Deepfake Detection Performance on Celeb-DF (v2) Dataset
	References
	1. O'Toole A.J., Castillo C.D. Face recognition by humans and machines: three fundamental advances from deep learning. Annual Review of Vision Science. 2021. vol. 7(1). pp. 543–570.
	2. Fola-Rose A., Solomon E., Bryant K., Woubie A. A Systematic Review of Facial Recognition Methods: Advancements, Applications, and Ethical Dilemmas. IEEE International Conference on Information Reuse and Integration for Data Science (IRI). 2024. pp....
	3. EL Fadel N. Facial Recognition Algorithms: A Systematic Literature Review. Journal of Imaging. 2025. vol. 11(2).
	4. Wu Y. Facial Recognition Technology: College Students’ Perspectives in the US. Trends in Sociology. 2024. vol. 2(2). pp. 56–69. DOI: 10.61187/ts.v2i2.119.
	5. Dang M., NguyenT.N. Digital face manipulation creation and detection: A systematic review. Electronics. 2023. vol. 12(16).
	6. Masood M., Nawaz M., Malik K.M., Javed A., Irtaza A., Malik H. Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward. Applied intelligence. 2023. vol. 53(4). pp. 3974–4026.
	7. Akkem Y., Biswas S.K., Varanasi A. A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network. Engineering Applications of Artificial Intelligence. 2024. vol. 131.
	8. Alqahtani H., Kavakli-Thorne M., Kumar G. Applications of generative adversarial networks (gans): An updated review. Archives of Computational Methods in Engineering. 2021. vol. 28. pp. 525–552.
	9. Sun X., Chen S., Yao T., Liu H., Ding S., Ji R. Diffusionfake: Enhancing generalization in deepfake detection via guided stable diffusion. Advances in Neural Information Processing Systems. 2024. vol. 37. pp. 101474–101497.
	10. Ge Y., Xu J., Zhao B.N., Joshi N., Itti L., Vineet V. Dall-e for detection: Language-driven compositional image synthesis for object detection. arXiv preprint arXiv:2206.09592. 2022.
	11. Zhao H., Liang T., Davari S., Kim D. Synthesizing Reality: Leveraging the Generative AI-Powered Platform Midjourney for Construction Worker Detection. arXiv preprint arXiv:2507.13221. 2025.
	12. Zhou K.Z., Choudhry A., Gumusel E., Sanfilippo M.R. Sora is Incredible and Scary": Emerging Governance Challenges of Text-to-Video Generative AI Models. arXiv preprint arXiv:2406.11859. 2024.
	13. Qadir A., Mahum R., El-Meligy M.A., Ragab A.E., AlSalman A., Awais M. An efficient deepfake video detection using robust deep learning. Heliyon, 2024. vol. 10(5).
	14. Bhattacharyya C., Wang H., Zhang F., Kim S., Zhu X. Diffusion deepfake. arXiv preprint arXiv:2404.01579. 2024.
	15. Al-Khazraji S.H., Saleh H.H., Khalid A.I., Mishkhal I.A. Impact of deepfake technology on social media: Detection, misinformation and societal implications. The Eurasia Proceedings of Science Technology Engineering and Mathematics. 2023. vol. 23. ...
	16. Jbara W.A., Hussein N.A.H.K., Soud J.H. Deepfake Detection in Video and Audio Clips: A Comprehensive Survey and Analysis. Mesopotamian Journal of CyberSecurity. 2024. vol. 4(3). pp. 233–250.
	17. Arya M., Goyal U., Chawla S. A Study on Deep Fake Face Detection Techniques. 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). IEEE, 2024. pp. 459–466.
	18. Rajeev A., Raviraj P. An insightful analysis of digital forensics effects on networks and multimedia applications. SN Computer Science. 2023. vol. 4(2).
	19. Sheremet O.I., Sadovoi O.V., Harshanov D.V., Kovalchuk S., Sheremet K.S., Sokhina Y.V. Efficient face detection and replacement in the creation of simple fake videos. Applied Aspects of Information Technology. 2023. vol. 6(3). pp. 286–303.
	20. Wang J., Yuan S., Lu T., Zhao H., Zhao Y. Video-based real-time monitoring of engagement in E-learning using MediaPipe through multi-feature analysis. Expert Systems with Applications. 2025. vol. 288. DOI: 10.1016/j.eswa.2025.128239.
	21. Chollet F. Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 1251–1258.
	22. Joshi D., Kashyap A., Arora P. CapsNet-Based Deep Learning Approach for Robust Image Forgery Detection. 10th International Conference on Signal Processing and Communication (ICSC). IEEE, 2025. pp. 308–314.
	23. Alanazi F., Ushaw G., Morgan G. Improving detection of deepfakes through facial region analysis in images. Electronics. 2024. vol. 13(1). DOI: 10.3390/electronics13010126.
	24. Hasanaath A.A., Luqman H., Katib R., Anwar S. FSBI: Deepfake detection with frequency enhanced self-blended images. Image and Vision Computing. 2025. vol. 154.
	25. Qadir A., Mahum R., El-Meligy M.A., Ragab A.E., AlSalman A., Awais M. An efficient deepfake video detection using robust deep learning. Heliyon, 2024. vol. 10(5).
	26. Xiong D., Wen Z., Zhang C., Ren D., Li W. BMNet: Enhancing Deepfake Detection through BiLSTM and Multi-Head Self-Attention Mechanism. IEEE Access. 2025. vol. 13. pp. 21547–21556. DOI: 10.1109/ACCESS.2025.3533653.
	27. Naskar G., Mohiuddin S., Malakar S., Cuevas E., Sarkar R. Deepfake detection using deep feature stacking and meta-learning. Heliyon. 2024. vol. 10(4).
	28. Al Redhaei A., Fraihat S., Al-Betar M.A. A self-supervised BEiT model with a novel hierarchical patchReducer for efficient facial deepfake detection. Artificial Intelligence Review. 2025. vol. 58(9).
	29. Ilyas H., Javed A., Malik K.M. ConvNext-PNet: An interpretable and explainable deep-learning model for deepfakes detection. IEEE International Joint Conference on Biometrics (IJCB). 2024. pp. 1–9.
	30. Deressa D.W., Lambert P., Van Wallendael G., Atnafu S., Mareen H. Improved Deepfake Video Detection Using Convolutional Vision Transformer. IEEE Gaming, Entertainment, and Media Conference (GEM). 2024. pp. 1–6.
	31. Gong R., He R., Zhang, D., Sangaiah A.K., Alenazi M.J. Robust face forgery detection integrating local texture and global texture information. EURASIP Journal on Information Security. 2025(1). vol. 3.
	32. Saikia P., Dholaria D., Yadav P., Patel V., Roy M. A hybrid CNN-LSTM model for video deepfake detection by leveraging optical flow features. International joint conference on neural networks (IJCNN). IEEE, 2022. pp. 1–7.
	33. Rossler A., Cozzolino D., Verdoliva L., Riess C., Thies J., et al., Faceforensics: A Large-Scale Video Dataset for Forgery Detection in Human Faces. arXiv preprint arXiv:1803.09179. 2018.
	34. Li Y., Yang X., Sun P., Qi H., Lyu S. Celeb-df: A largescale challenging dataset for deepfake forensics. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. pp. 3207–3216.
	35. Akbar A.F., Ayu P.D.W., Hostiadi D.P. Performance Analysis of Deep Learning Architectures in Classifying Fake and Real Images. JUITA: Jurnal Informatika. 2025. pp. 167–176.
	36. Khan S.B., Gupta M., Gopinathan B., Thyluru RamaKrishna M., Saraee M., Mashat A., Almusharraf A. DeepFake Detection: Evaluating the Performance of EfficientNetV2‐B2 on Real vs. Fake Image Classification. IET Image Processing. 2025. vol. 19(1).
	Rajeev Aishwarya — Student, GSSS Institute of Engineering and Technology for Women. Research interests: deepfake detection, XceptionCapsule Net, Face Mesh, BlazeFace, facial landmark extraction, video forensics. The number of publications — 1. aishwar...
	P. Raviraj — Professor, GSSS Institute of Engineering and Technology for Women. Research interests: deepfake detection, XceptionCapsule Net, Face Mesh, BlazeFace, facial landmark extraction, video forensics, image processing. The number of publication...
	Литература
	1. O'Toole A.J., Castillo C.D. Face recognition by humans and machines: three fundamental advances from deep learning. Annual Review of Vision Science. 2021. vol. 7(1). pp. 543–570.
	2. Fola-Rose A., Solomon E., Bryant K., Woubie A. A Systematic Review of Facial Recognition Methods: Advancements, Applications, and Ethical Dilemmas. IEEE International Conference on Information Reuse and Integration for Data Science (IRI). 2024. pp....
	3. EL Fadel N. Facial Recognition Algorithms: A Systematic Literature Review. Journal of Imaging. 2025. vol. 11(2).
	4. Wu Y. Facial Recognition Technology: College Students’ Perspectives in the US. Trends in Sociology. 2024. vol. 2(2). pp. 56–69. DOI: 10.61187/ts.v2i2.119.
	5. Dang M., NguyenT.N. Digital face manipulation creation and detection: A systematic review. Electronics. 2023. vol. 12(16).
	6. Masood M., Nawaz M., Malik K.M., Javed A., Irtaza A., Malik H. Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward. Applied intelligence. 2023. vol. 53(4). pp. 3974–4026.
	7. Akkem Y., Biswas S.K., Varanasi A. A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network. Engineering Applications of Artificial Intelligence. 2024. vol. 131.
	8. Alqahtani H., Kavakli-Thorne M., Kumar G. Applications of generative adversarial networks (gans): An updated review. Archives of Computational Methods in Engineering. 2021. vol. 28. pp. 525–552.
	9. Sun X., Chen S., Yao T., Liu H., Ding S., Ji R. Diffusionfake: Enhancing generalization in deepfake detection via guided stable diffusion. Advances in Neural Information Processing Systems. 2024. vol. 37. pp. 101474–101497.
	10. Ge Y., Xu J., Zhao B.N., Joshi N., Itti L., Vineet V. Dall-e for detection: Language-driven compositional image synthesis for object detection. arXiv preprint arXiv:2206.09592. 2022.
	11. Zhao H., Liang T., Davari S., Kim D. Synthesizing Reality: Leveraging the Generative AI-Powered Platform Midjourney for Construction Worker Detection. arXiv preprint arXiv:2507.13221. 2025.
	12. Zhou K.Z., Choudhry A., Gumusel E., Sanfilippo M.R. Sora is Incredible and Scary": Emerging Governance Challenges of Text-to-Video Generative AI Models. arXiv preprint arXiv:2406.11859. 2024.
	13. Qadir A., Mahum R., El-Meligy M.A., Ragab A.E., AlSalman A., Awais M. An efficient deepfake video detection using robust deep learning. Heliyon, 2024. vol. 10(5).
	14. Bhattacharyya C., Wang H., Zhang F., Kim S., Zhu X. Diffusion deepfake. arXiv preprint arXiv:2404.01579. 2024.
	15. Al-Khazraji S.H., Saleh H.H., Khalid A.I., Mishkhal I.A. Impact of deepfake technology on social media: Detection, misinformation and societal implications. The Eurasia Proceedings of Science Technology Engineering and Mathematics. 2023. vol. 23. ...
	16. Jbara W.A., Hussein N.A.H.K., Soud J.H. Deepfake Detection in Video and Audio Clips: A Comprehensive Survey and Analysis. Mesopotamian Journal of CyberSecurity. 2024. vol. 4(3). pp. 233–250.
	17. Arya M., Goyal U., Chawla S. A Study on Deep Fake Face Detection Techniques. 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). IEEE, 2024. pp. 459–466.
	18. Rajeev A., Raviraj P. An insightful analysis of digital forensics effects on networks and multimedia applications. SN Computer Science. 2023. vol. 4(2).
	19. Sheremet O.I., Sadovoi O.V., Harshanov D.V., Kovalchuk S., Sheremet K.S., Sokhina Y.V. Efficient face detection and replacement in the creation of simple fake videos. Applied Aspects of Information Technology. 2023. vol. 6(3). pp. 286–303.
	20. Wang J., Yuan S., Lu T., Zhao H., Zhao Y. Video-based real-time monitoring of engagement in E-learning using MediaPipe through multi-feature analysis. Expert Systems with Applications. 2025. vol. 288. DOI: 10.1016/j.eswa.2025.128239.
	21. Chollet F. Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 1251–1258.
	22. Joshi D., Kashyap A., Arora P. CapsNet-Based Deep Learning Approach for Robust Image Forgery Detection. 10th International Conference on Signal Processing and Communication (ICSC). IEEE, 2025. pp. 308–314.
	23. Alanazi F., Ushaw G., Morgan G. Improving detection of deepfakes through facial region analysis in images. Electronics. 2024. vol. 13(1). DOI: 10.3390/electronics13010126.
	24. Hasanaath A.A., Luqman H., Katib R., Anwar S. FSBI: Deepfake detection with frequency enhanced self-blended images. Image and Vision Computing. 2025. vol. 154.
	25. Qadir A., Mahum R., El-Meligy M.A., Ragab A.E., AlSalman A., Awais M. An efficient deepfake video detection using robust deep learning. Heliyon, 2024. vol. 10(5).
	26. Xiong D., Wen Z., Zhang C., Ren D., Li W. BMNet: Enhancing Deepfake Detection through BiLSTM and Multi-Head Self-Attention Mechanism. IEEE Access. 2025. vol. 13. pp. 21547–21556. DOI: 10.1109/ACCESS.2025.3533653.
	27. Naskar G., Mohiuddin S., Malakar S., Cuevas E., Sarkar R. Deepfake detection using deep feature stacking and meta-learning. Heliyon. 2024. vol. 10(4).
	28. Al Redhaei A., Fraihat S., Al-Betar M.A. A self-supervised BEiT model with a novel hierarchical patchReducer for efficient facial deepfake detection. Artificial Intelligence Review. 2025. vol. 58(9).
	29. Ilyas H., Javed A., Malik K.M. ConvNext-PNet: An interpretable and explainable deep-learning model for deepfakes detection. IEEE International Joint Conference on Biometrics (IJCB). 2024. pp. 1–9.
	30. Deressa D.W., Lambert P., Van Wallendael G., Atnafu S., Mareen H. Improved Deepfake Video Detection Using Convolutional Vision Transformer. IEEE Gaming, Entertainment, and Media Conference (GEM). 2024. pp. 1–6.
	31. Gong R., He R., Zhang, D., Sangaiah A.K., Alenazi M.J. Robust face forgery detection integrating local texture and global texture information. EURASIP Journal on Information Security. 2025(1). vol. 3.
	32. Saikia P., Dholaria D., Yadav P., Patel V., Roy M. A hybrid CNN-LSTM model for video deepfake detection by leveraging optical flow features. International joint conference on neural networks (IJCNN). IEEE, 2022. pp. 1–7.
	33. Rossler A., Cozzolino D., Verdoliva L., Riess C., Thies J., et al., Faceforensics: A Large-Scale Video Dataset for Forgery Detection in Human Faces. arXiv preprint arXiv:1803.09179. 2018.
	34. Li Y., Yang X., Sun P., Qi H., Lyu S. Celeb-df: A largescale challenging dataset for deepfake forensics. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. pp. 3207–3216.
	35. Akbar A.F., Ayu P.D.W., Hostiadi D.P. Performance Analysis of Deep Learning Architectures in Classifying Fake and Real Images. JUITA: Jurnal Informatika. 2025. pp. 167–176.
	36. Khan S.B., Gupta M., Gopinathan B., Thyluru RamaKrishna M., Saraee M., Mashat A., Almusharraf A. DeepFake Detection: Evaluating the Performance of EfficientNetV2‐B2 on Real vs. Fake Image Classification. IET Image Processing. 2025. vol. 19(1).
	Раджив Айшвария — студент, Инженерный институт для женщин в Майсуре. Область научных интересов: обнаружение дипфейков, XceptionCapsule Net, Face Mesh, BlazeFace, извлечение лицевых ориентиров, видеокриминалистика. Число научных публикаций — 1. aishwar...
	П. Равирадж — профессор, Инженерный институт для женщин в Майсуре. Область научных интересов: обнаружение дипфейков, XceptionCapsule Net, Face Mesh, BlazeFace, извлечение лицевых ориентиров, видеокриминалистика, обработка изображений. Число научных пу...

