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Abstract. Deepfake detection continues to pose significant challenges, primarily because 
existing methods often suffer from key limitations, including reliance on individual frame 
analysis, vulnerability to low-resolution or compressed videos, and inability to capture 
temporal inconsistencies. Furthermore, traditional face detection techniques frequently fail 
under challenging conditions such as poor lighting or occlusion, while many models struggle 
with subtle manipulations due to inadequate feature extraction and overfitting on limited 
datasets. To address the drawbacks of existing deepfake detection approaches, this research 
proposes a Face and Motion-Aware Detection Framework that integrates both spatial and 
temporal information. The framework begins with a preprocessing stage that extracts video 
frames at a fixed rate to ensure temporal consistency. Facial regions and detailed landmarks are 
accurately detected using BlazeFace and MediaPipe Face Mesh. These features are then 
processed by the proposed XceptionCapsule Net, which combines the spatial feature extraction 
capabilities of the Xception model with the hierarchical and viewpoint-aware representation of 
Capsule Networks (CapsNet), and the temporal dependency modeling power of a Bidirectional 
Long Short-Term Memory (BiLSTM) layer. The architecture incorporates Global Average 
Pooling, Flatten, and fully connected layers, with Sigmoid activation for binary classification. 
Extensive evaluations on the FaceForensics++ (FF++) and Celeb-DF datasets demonstrate 
strong performance, achieving up to 99.31% accuracy and 99.99% Area Under the Curve 
(AUC). The results validate the framework’s effectiveness, precision, and generalization across 
various video qualities and manipulation scenarios. 

Keywords: deepfake detection, XceptionCapsule Net, Face Mesh, BlazeFace, facial 
landmark extraction, video forensics. 
 

1. Introduction. The human face is one of the most defining features 
of an individual, making it a critical component in identity recognition 
systems [1]. As facial recognition technologies continue to evolve, so do 
concerns regarding their misuse, particularly with the rapid advancement of 
facial synthesis techniques. Among the most concerning developments is 
deepfake technology, an artificial intelligence-driven method that enables 
the seamless manipulation of facial features. This technology allows a 
person’s face to be superimposed onto another's individual in a video 
without consent, raising serious ethical, legal, and security concerns. 
Deepfakes pose serious threats as they can be exploited to spread 
misrepresentation, steal identities, and carry out harmful activities [2, 3]. 

Deepfake content, typically in the form of synthetic videos and 
images, is widely disseminated across social media platforms. Although 
digital image manipulation has existed since the early days of 
photography [4], it traditionally required significant expertise and manual 



effort, often involving software such as Adobe Photoshop. In contrast, the 
advent of Artificial intelligence (AI)-based tools has democratized content 
manipulation. With minimal technical knowledge, users can now generate 
highly realistic fake videos, making face-swapping and fabricated scenarios 
appear convincingly authentic [5 – 7]. 

Deepfake videos are typically generated using machine learning 
algorithms that digitally alter a subject’s appearance by replacing it with 
that of another individual. These alterations are typically grouped into three 
main categories: 

Head Puppetry: Synchronizes the head and shoulder movements of 
the target with those of a source individual. 

Face Swapping: Replaces one person’s face with another while 
maintaining the original expressions. 

Lip-Syncing: Alters lip movements to match audio content not 
originally spoken by the subject [6]. 

While traditional computer graphics methods have been employed 
for similar purposes, modern deepfake generation predominantly relies on 
deep learning (DL) techniques, including generative adversarial networks 
(GANs) and autoencoders, which significantly enhance the realism of 
synthetic media and complicate detection efforts [7, 8]. In addition to these, 
diffusion-based generative models have recently gained prominence in 
content synthesis. Models such as Stable Diffusion [9], DALL-E [10], 
MidJourney [11], and Sora [12] can generate or manipulate highly realistic 
images and videos from simple textual prompts. By progressively denoising 
random noise into coherent outputs, these models offer unprecedented 
control and realism, making synthetic media creation more accessible and 
further intensifying the challenges of deepfake detection [13, 14]. Recent 
studies report a substantial increase in deepfake content across digital 
platforms, intensifying concerns around fraud, misinformation, and privacy 
violations. To address this challenge, leading organizations such as Defense 
Advanced Research Projects Agency (DARPA), Facebook, and Google 
have launched initiatives focused on developing advanced deepfake 
detection technologies [15, 16]. Numerous DL-based approaches have 
emerged to address this threat. Techniques involving Long Short-Term 
Memory (LSTM) networks, Recurrent Neural Networks (RNNs), and 
hybrid models have shown promise in identifying manipulated media. 
Additionally, Deep Neural Networks (DNNs) have shown effectiveness in 
detecting fake news and misleading social media content [17, 18]. 

However, significant research gaps persist. A major limitation of 
many current models is their reliance on individual frame analysis, which 
ignores temporal inconsistencies such as unnatural head movements and 



facial expressions. This highlights the importance of temporal modeling 
through RNNs, LSTMs, or transformer-based architectures to better 
understand sequential patterns in videos. Additionally, existing systems 
struggle with low-resolution or compressed videos, where common artifacts 
are masked, hindering manipulation detection. Face detection, a crucial 
preprocessing step, is especially vulnerable under real-world conditions, 
such as occlusion, poor lighting, and low resolution, often resulting in 
missed or inaccurate face localization. Moreover, as deepfake generation 
grows more sophisticated, many subtle alterations bypass detection due to 
the limited feature extraction capabilities of traditional models. Another 
pressing issue is overfitting, primarily driven by scarce and homogeneous 
training datasets, which undermines model generalization across diverse 
manipulation types and datasets. These challenges underscore the urgent 
need for a versatile, temporally aware, and generalizable deepfake detection 
framework that can operate effectively under a variety of media conditions 
and evolving manipulation techniques. To bridge these gaps, this study 
presents a face and motion-aware framework that effectively utilizes spatial 
and temporal information to achieve reliable and high-accuracy deepfake 
detection. The primary contributions are as follows: 

1. An innovative framework designed to improve the accuracy 
and reliability of deepfake detection by combining spatial and temporal 
feature analysis. 

2. The framework ensures consistent frame extraction at a fixed 
sampling rate to maintain video-level coherence. It utilizes BlazeFace [19] 
for efficient face localization and landmark detection, along with MediaPipe 
Face Mesh [20], to provide accurate spatial inputs under challenging 
conditions such as low resolution, occlusion, and lighting variations. 

3. A hybrid deep neural network (DNN) is designed by integrating 
the Xception model [21] with Capsule Networks (CapsNet) [22] to capture 
spatial hierarchies and viewpoint variations. This architecture enhances 
sensitivity to fine-grained facial anomalies and improves generalization 
across different manipulation types. 

4. Temporal dependency modeling is introduced through a 
Bidirectional Long Short-Term Memory (BiLSTM) layer, which captures 
sequential relationships and motion continuity between consecutive frames. 
This addition allows the model to detect temporal inconsistencies in 
blinking, lip movement, and head motion that are commonly present in 
manipulated videos. 

5. The model employs Global Average Pooling (GAP), followed 
by Flatten and fully connected layers, with sigmoid activation to ensure 
robust binary classification. 



This article is structured to offer a thorough and organized 
explanation of the proposed deepfake detection approach. Section 2 reviews 
relevant literature, outlining existing methods, notable contributions, and 
existing research gaps in deepfake detection. Section 3 explains the 
proposed approach in detail, covering the preprocessing steps, extraction of 
spatial and temporal features, and the overall architecture of the detection 
model. Section 4 presents the experimental setup and results, accompanied 
by a detailed performance evaluation using standard benchmark datasets. 
Finally, Section 5 summarizes the main outcomes and discusses potential 
future improvements to enhance the effectiveness, adaptability, and 
reliability of deepfake detection systems. 

2. Literature Review. The rapid progress in deepfake generation 
technologies in recent years has raised serious concerns about the credibility 
and authenticity of digital content. In response, a range of DL-based 
detection approaches have been proposed, aiming to accurately differentiate 
authentic content from manipulated media. Existing literature explores 
various strategies, including hybrid models, attention mechanisms, and 
temporal analysis, to address the limitations of earlier frame-level or spatial-
only methods. These efforts underscore the urgent need for robust, 
generalizable frameworks capable of detecting subtle visual and temporal 
inconsistencies across diverse datasets and manipulation techniques. 

In paper [23] the authors introduced a novel approach to deepfake 
detection by analyzing the contribution of distinct facial regions using face 
cutout techniques. This study was included in our review because it 
addresses the overfitting problem in deepfake datasets and aligns with the 
emerging trend of leveraging facial region importance for more robust 
detection. Input images were augmented by selectively removing facial 
areas based on landmarks, creating diverse training samples, while training 
was conducted with an 80/10/10 split for training, validation, and testing. 
The methodology was evaluated on FF++ and Celeb-DFv2 datasets, 
achieving up to 91% accuracy on Celeb-DF and demonstrating the 
significance of external facial features, particularly the eyes, for detection. 
This work highlights a broader trend in deepfake research toward targeted 
data augmentation strategies and feature-aware model training, though it 
suggests further exploration is needed for video-based deepfake detection 
and cross-dataset generalization. 

Paper [24] proposed a Frequency-Enhanced Self-Blended Images 
(FSBI) approach for deepfake detection, which blends images with 
themselves to introduce generic forgery artifacts and uses Discrete Wavelet 
Transform (DWT) to extract discriminative frequency-domain features. 
This study was included in our review because it demonstrates a trend 



toward frequency-aware and artifact-generalized detection strategies that 
improve model robustness and cross-dataset generalization. The model was 
evaluated on FF++ and Celeb-DF datasets using both within-dataset and 
cross-dataset protocols, achieving an AUC of 95.49% when trained on 
FF++ and tested on Celeb-DF, highlighting strong adaptability to unseen 
manipulations. FSBI effectively mitigates overfitting to dataset-specific 
artifacts, and ablation studies confirmed the benefits of self-blending and 
frequency feature extraction. This work illustrates the broader research 
trend of combining spatial and frequency-domain analysis for deepfake 
detection, though performance remains lower for certain complex 
manipulations such as NeuralTextures (NT) and Face2Face (F2F), 
suggesting areas for further improvement in real-world scenarios. 

In paper [25] the authors proposed an efficient deepfake detection 
framework using a hybrid ResNet-Swish-BiLSTM network, which 
combines residual learning for spatial features with recurrent modeling of 
temporal dependencies. The model was extensively tested on the 
FaceForensics++ (FF++) and Deepfake Detection Challenge (DFDC) 
datasets, achieving 96.23% accuracy on FF++ and 78.33% accuracy when 
aggregating FF++ and DFDC records. To assess generalization, they further 
conducted cross-corpus experiments using Celeb-DF, where performance 
dropped to AUC values of 71.56% (DFDC) and 70.04% (Celeb-DF) when 
trained on FF++, and 70.12% (FF++) and 65.23% (Celeb-DF) when trained 
on DFDC. This evaluation highlights a broader trend in deepfake detection 
research: models often perform well in database-internal evaluations but 
degrade under cross-dataset conditions due to differences in compression, 
resolution, and manipulation artifacts. The study was included in our review 
as it illustrates both the strength of hybrid spatial-temporal learning and the 
persistent challenge of cross-dataset generalization, which directly relates to 
our proposed approach. 

Paper [26] introduced a deepfake detection framework, BMNet, that 
integrates BiLSTM to capture temporal dependencies across frames and 
multi-head self-attention (MHSA) to extract localized forgery features from 
facial regions. Unlike static CNN-based methods, BMNet explicitly models 
both temporal and regional inconsistencies, addressing a key gap in prior 
research. The model was evaluated on four benchmark datasets (FF++, 
UADFV, Celeb-DF, DFDC) and achieved 95.54%, 92.18%, 80.20%, and 
84.72% accuracy, respectively, demonstrating consistent improvements 
across varying data sources. Importantly, the inclusion of landmark-based 
features enhanced interpretability and robustness, with ablation studies 
confirming the contribution of both BiLSTM and MHSA modules. This 
work was included in our survey because it exemplifies a spatiotemporal 



trend in deepfake detection and shows stronger cross-dataset adaptability 
than handcrafted or purely spatial CNN models, while still highlighting the 
persistent performance gap on Celeb-DF compared to easier datasets. 

In [27] the authors introduced a stacking-based ensemble framework 
that fuses deep features from Xception and EfficientNet-B7, followed by 
feature ranking and classification using an MLP meta-learner. The model 
achieved 96.33% accuracy on Celeb-DF (V2) and 98.00% on 
FaceForensics++ (FF++), outperforming the individual base models. Their 
experimental setup used clear train/validation/test splits for both datasets, 
ensuring fair evaluation and reproducibility. This work was selected as it 
represents the ensemble and meta-learning trend in deepfake detection, 
focusing on combining complementary deep models with feature selection 
for improved robustness. However, the authors also noted limitations, 
including increased computational cost, reduced interpretability, and 
potential overfitting risks, issues that remain common across ensemble 
approaches. The study is significant because it demonstrates how carefully 
designed stacking can improve cross-dataset generalization, while also 
highlighting challenges in balancing accuracy with efficiency and 
transparency. 

Paper [28] introduced a self-supervised BEiT-HPR (Hierarchical 
PatchReducer) model for efficient facial deepfake detection aimed at 
addressing the high computational cost associated with existing detection 
systems. The study was motivated by the growing difficulty of 
distinguishing real from fake facial videos due to the rapid advancement of 
generative models and the impracticality of deploying complex models in 
resource-limited environments. Experimental results across FF++, Celeb-
DF, and DFD datasets demonstrated notable efficiency gains and strong 
detection performance. However, the approach may face limitations in 
handling unseen forgery types or cross-dataset generalization due to its 
reliance on self-supervised pretraining within limited data domains. 

In paper [29] the authors proposed ConvNext-PNet, an interpretable 
and explainable deep learning framework for detecting visual deepfakes, 
aiming to enhance trust and transparency in AI-based forgery detection. The 
motivation behind this work was to address the limitation of existing 
deepfake detection models that, despite achieving high accuracy, lack 
interpretability and fail to justify their classification decisions. By 
integrating prototype learning into a modified ConvNext architecture, the 
model not only improves discriminative feature learning but also provides 
visual reasoning for its predictions, thereby increasing user trust. 
Experimental evaluations on benchmark datasets such as FF++, CelebDF, 
DFDC-P, and DFF demonstrated high robustness and effective detection of 



visual manipulations. However, the added interpretability components may 
introduce additional computational overhead, potentially limiting real-time 
applicability in large-scale or streaming scenarios. 

In [30] the authors introduced an improved deepfake video detection 
framework based on a Convolutional Vision Transformer (CViT2) that 
combines the strengths of CNNs and Vision Transformers to enhance 
detection accuracy and generalization. The model was proposed to address 
the limitations of existing CNN-based methods, which often struggle to 
capture global dependencies and contextual information in video frames. By 
employing a CNN for extracting learnable spatial features and a Vision 
Transformer for modeling long-range relationships using attention 
mechanisms, the CViT2 architecture effectively identifies subtle 
manipulation cues in deepfake videos. Experiments conducted across 
multiple benchmark datasets, including DFDC, FF++, Celeb-DF v2, and 
DeepfakeTIMIT, demonstrated high accuracy and strong cross-dataset 
robustness. However, the model’s complex structure and heavy training 
requirements may restrict its real-time applicability and scalability in low-
resource environments. 

Paper [31] proposed a robust face forgery detection framework that 
integrates both local and global texture information to enhance detection 
accuracy and generalization. The method was introduced to address the 
limitations of existing CNN-based approaches, which often overfit training 
data and fail to capture subtle forgery traces across diverse sources and 
post-processing variations. By employing a two-stream architecture 
combining RGB and texture features, along with an adaptive feature fusion 
and attention mechanism, the model effectively exposes fine-grained 
artifacts at multiple scales. This approach improves robustness and feature 
discrimination, leading to better performance across benchmark datasets. 
However, the model’s complexity and computational cost may limit its 
deployment in real-time or resource-constrained environments. 

Paper [32] proposed a hybrid CNN-LSTM model for video deepfake 
detection that leverages optical flow features to capture both spatial and 
temporal cues from video frames. The approach was introduced to 
overcome the limitation of conventional CNN-based methods, which 
primarily focus on spatial information and fail to exploit temporal 
dependencies between frames. This hybrid strategy enhances detection 
accuracy even with a limited number of samples, achieving competitive 
results on benchmark datasets such as DFDC, FF++, and Celeb-DF. 
However, the model’s performance may still be constrained by moderate 
accuracy on challenging datasets and dependence on precise optical flow 
computation, which can increase computational overhead. 



These studies highlight the evolving sophistication of deepfake 
detection frameworks and the need to incorporate spatial, temporal, and 
attention-based mechanisms. Nonetheless, existing methods often fail to 
address issues such as generalization [27] to unseen manipulations, real-world 
distortions, and computational efficiency. Table 1 offers a detailed overview 
of the main insights and approaches highlighted in the literature review. 
 

Table 1. Overview of the literature review 
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[23] 
Face cutout-

based 
augmentation 

Region-specific 
face removal; 

data 
augmentation to 

reduce 
overfitting 

FF++, Celeb-
DFv2; 80/10/10 

train/val/test 

91% on 
Celeb-DF 

Eyes most 
impactful; 

limited 
exploration for 

video sequences 
& cross-dataset 

validation 

[24] 

FSBI 
(Frequency 

Enhanced Self-
Blended 

Images) + 
DWT 

Self-blended 
images to 

create generic 
artifacts; 
frequency 

domain features 

FF++, Celeb-DF; 
within- and cross-

dataset 

AUC 95.49% 
(FF++→Cele

b-DF) 

Lower 
performance on 

complex 
manipulations 

(F2F, NT); 
needs real-

world 
evaluation 

[25] ResNet-Swish-
BiLSTM hybrid 

Residual CNN 
for spatial + 
BiLSTM for 

temporal 
modeling 

FF++, DFDC, 
Celeb-DF; cross-
corpus evaluation 

96.23% 
(FF++), 
78.33% 

(FF+++DFD
C); AUC 70-
71% cross-

dataset 

Strong intra-
dataset 

performance, 
weak cross-

dataset 
generalization 

[26] 
BMNet 

(BiLSTM + 
MHSA) 

Temporal + 
regional 

attention; 
landmark-based 

features 

FF++, UADFV, 
Celeb-DF, DFDC 

95.54%, 
92.18%, 
80.20%, 
84.72% 

Cross-dataset 
gap on Celeb-
DF; highlights 
spatiotemporal 

trend 

[27] 

Stacking 
ensemble 

(Xception + 
EfficientNet-B7 

+ MLP) 

Feature fusion 
+ meta-

learning; deep 
feature ranking 

FF++, Celeb-
DFv2; clear 

train/val/test split 

98% (FF++), 
96.33% 
(Celeb-
DFv2) 

Increased 
computation; 

interpretability 
issues; risk of 

overfitting 
 
 
 



Continuation of the Table 1 
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[28] 
Self-Supervised 

BEiT-HPR 
(Hierarchical 

PatchReducer) 

Hierarchical 
patch reduction 

to lower 
computation; 

self-supervised 
BEiT backbone 

FF++, Celeb-DF, 
DFD; standard 
benchmark split 

83.92% 
(FF++), 
97.59% 

(Celeb-DF), 
98.25% 
(DFD) 

Strong accuracy 
with reduced 
complexity; 

may face 
limitations on 
unseen forgery 

types 

[29] 
ConvNext-PNet 

(Prototype-
based 

ConvNext) 

Prototype 
learning for 

interpretability; 
explainable 

visual 
reasoning 

FF++, CelebDF, 
DFDC-P, DFF 

High 
robustness 

across 
datasets 
(specific 

accuracy not 
stated) 

Provides 
interpretability; 

adds 
computational 

overhead 
affecting real-

time use 

[30] 
Convolutional 

Vision 
Transformer 

(CViT2) 

CNN for spatial 
extraction + 

ViT for global 
context with 

attention 

DFDC, FF++, 
Celeb-DFv2, 

DeepfakeTIMIT, 
TrustedMedia 

95% 
(DFDC), 
94.8% 

(FF++), 
98.3% 
(Celeb-
DFv2), 
76.7% 

(TIMIT) 

Excellent cross-
dataset 

accuracy; high 
model 

complexity and 
training cost 

[31] 
Two-stream 

texture-aware 
network 

Integration of 
global and local 
texture features; 
adaptive fusion 
and attention 

modules 

Multiple 
benchmark 

datasets (FF++, 
Celeb-DF, etc.) 

Outperforme
d recent 
SOTA 

methods 

High 
computational 
complexity; 
limited real-

time 
applicability 

[32] 
Hybrid CNN-
LSTM with 
optical flow 

Temporal 
feature 

extraction via 
optical flow; 

hybrid spatial-
temporal 
learning 

DFDC, FF++, 
Celeb-DF; ≤100 
frames/sample 

66.26% 
(DFDC), 
91.21% 
(FF++), 
79.49% 

(Celeb-DF) 

Moderate 
accuracy on 

complex 
datasets; relies 

on precise 
optical flow 
computation 

 
A comprehensive review of recent studies reveals several key trends 

and research directions in the domain of deepfake detection. Contemporary 
approaches increasingly emphasize spatial-temporal integration, where 
models such as those in [25 – 27, 30, 32] combine spatial and temporal 
features to overcome the limitations of static frame analysis. Techniques 
incorporating BiLSTM or hybrid CNN-LSTM frameworks have 
demonstrated the ability to capture motion inconsistencies across consecutive 
frames, thereby improving temporal awareness and detection accuracy. 
Another significant development is the adoption of attention-based and 



transformer-based mechanisms, as observed in BMNet [26], CViT2 [30], and 
GRAM [31], which capture global relationships and multi-scale feature 
dependencies to achieve better generalization across diverse datasets. 
Furthermore, frequency and artifact-based analysis methods, including DWT 
and FSBI [24], have proven effective in identifying high-frequency 
inconsistencies that are often imperceptible in RGB domains. Researchers 
have also explored ensemble and meta-learning strategies [27, 31], where 
complementary features from CNN and transformer architectures are fused to 
enhance stability and robustness, albeit at increased computational cost. In 
parallel, there is growing attention toward explainable and efficient detection 
models [28, 29], which ensure interpretability and real-time applicability – 
key requirements for deployment in social media monitoring and law 
enforcement systems. Despite these advancements, a persistent cross-dataset 
generalization gap remains a major challenge, as many models still exhibit 
significant performance degradation when evaluated on unseen data [25, 27]. 
Overall, the literature reflects a clear evolution from static, handcrafted 
models toward dynamic, spatial-temporal, and attention-driven architectures, 
with a heightened emphasis on explainability, efficiency, and adaptability. 
Building on these emerging trends, the proposed research introduces a unified 
Face and Motion-Aware XceptionCapsule Net that synergistically integrates 
spatial and temporal cues to achieve enhanced robustness and reliability in 
detecting diverse deepfake manipulations.  

3. Proposed methodology. Existing deepfake detection models 
encounter several critical challenges that significantly impact their accuracy 
and robustness [23, 24]. A primary limitation is their reliance on individual 
frame analysis, which performs inadequately on low-resolution or highly 
compressed videos where visual artifacts such as blurring and pixelation are 
less perceptible [25, 26]. This diminishes the model’s effectiveness in 
identifying manipulated content. Furthermore, face detection in such models 
is highly sensitive to environmental factors, including poor lighting, 
occlusions, and extreme facial angles, often resulting in missed or inaccurate 
face localizations [27, 28]. Another key limitation lies in the disregard of 
temporal inconsistencies. Since many models process frames independently, 
they fail to capture unnatural head movements or inconsistent facial 
expressions that may indicate tampering [29, 30]. As deepfake generation 
techniques become increasingly sophisticated, subtle manipulations with 
minimal visual cues often go undetected due to inadequate feature extraction 
mechanisms [21]. Additionally, many models suffer from overfitting, 
primarily caused by limited and homogeneous training data, thereby 
restricting their generalization to unseen deepfake formats and real-world 
media conditions [33, 34]. 



To overcome these drawbacks, this work proposes an innovative Face 
and Motion-Aware Detection Framework. The preprocessing step enhances 
temporal consistency by extracting video frames at a uniform frame rate. For 
face detection, the framework employs BlazeFace, which enables efficient 
and accurate facial region extraction. Subsequently, MediaPipe Face Mesh is 
used to extract detailed 3D facial landmarks, improving the granularity of 
spatial feature identification. The extracted features are then fed into the 
proposed XceptionCapsule-BiLSTM Net, which integrates the Xception 
network, CapsNet, and a Bidirectional Long Short-Term Memory (BiLSTM) 
layer to jointly capture spatial details and temporal dependencies. The 
Xception module, utilizing depthwise separable convolutions, is effective at 
extracting fine-grained spatial features that are critical for identifying 
deepfake artifacts. In parallel, the CapsNet component preserves spatial 
hierarchies and models the interrelationships between features, while the 
BiLSTM layer captures sequential frame relationships and motion dynamics, 
enabling the detection of temporal anomalies such as unnatural motion or 
facial distortions. The model architecture incorporates Global Average 
Pooling (GAP) to reduce dimensionality, a Flatten layer to vectorize the 
features, and Fully Connected layers to extract high-level representations. A 
Sigmoid activation function is used for binary classification between real and 
fake content. The strength of this approach lies in its unified spatial-temporal 
modeling via the XceptionCapsule-BiLSTM Net, which enhances the 
detection of subtle manipulations and improves robustness against common 
real-world challenges such as low resolution, compression artifacts, and 
sophisticated forgery techniques. Experimental evaluations (see Section 4) 
confirm the efficacy and generalizability of the proposed approach on 
multiple benchmark datasets. Figure 1 illustrates the block diagram of the 
proposed deepfake detection methodology. 

 

 
Fig. 1. Block diagram of the proposed methodology 



3.1. Preprocessing: BlazeFace Mesh Processor. The preprocessing 
stage plays a crucial role in enhancing deepfake detection, especially when 
dealing with low-resolution or highly compressed video inputs. Such 
conditions often obscure subtle artifacts and degrade the accuracy of face 
detection, particularly under poor lighting, occlusions, or low image quality. 
To overcome these drawbacks, this work introduces a novel BlazeFace 
Mesh Processor, designed to ensure robust and consistent facial region 
extraction. Initially, input videos are decomposed into individual frames at a 
uniform frame rate, thereby preserving temporal coherence essential for 
detecting sequential anomalies. The BlazeFace model is then employed to 
perform fast and efficient face detection, generating precise bounding boxes 
for each detected face within the frames. Subsequently, MediaPipe Face 
Mesh is applied to these detected faces to extract dense 3D facial 
landmarks. This step significantly enhances the granularity of spatial feature 
representation, improving the identification of subtle facial deformations 
introduced by deepfake manipulations. The integration of BlazeFace and 
MediaPipe in a unified pipeline ensures both speed and precision in 
preprocessing, laying a strong foundation for effective feature extraction 
and subsequent deepfake detection. 

3.1.1. Video Frames. Video frames are the basic units for analyzing 
spatial and temporal features in deepfake detection. A video is first 
converted into individual frames at a consistent frame rate (typically 30 fps) 
to preserve temporal coherence, allowing the framework to detect anomalies 
such as unnatural facial expressions, inconsistent head movements, or 
temporal flickering. Each frame is then processed using the BlazeFace 
model, which accurately localizes faces by generating precise bounding 
boxes, providing a reliable foundation for subsequent manipulation 
detection. 

3.1.2. BlazeFace. To accurately isolate face regions from individual 
video frames, the proposed framework employs BlazeFace, a real-time 
neural network-based face detector optimized for mobile and embedded 
Graphics Processing Units (GPUs). It is designed to deliver high inference 
speeds while maintaining accurate face localization and keypoint 
estimation. This makes it well-suited for handling extensive video datasets 
in deepfake detection applications. 

BlazeFace uses depthwise separable convolution with 5 × 5 kernels 
to achieve a larger receptive field at low computational cost. The network 
architecture is built using BlazeBlocks and Double BlazeBlocks, which 
preserve spatial resolution while minimizing computational overhead. The 
model operates on input frames of size 128 128 3,× ×  and outputs both 



bounding boxes and six key facial landmarks, including positions of the 
eyes, nose, ears, and mouth center. Specifically, the output tensors are: 

- Bounding boxes: [N, 4], where N is the number of faces 
detected, and 4 represents the coordinates (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) of each 
face. 

- Facial landmarks: [N, 6, 2], where 6 corresponds to the six 
keypoints and 2 represents (𝑥𝑥,𝑦𝑦) coordinates normalized relative to the 
input frame. 

Figure 2 illustrates the structure of the BlazeBlock and Double 
BlazeBlock components. 

 

 
Fig. 2. Structure of BlazeBlock and Double BlazeBlock 

 
Let 𝐼𝐼 ∈ ℝ𝐻𝐻×𝑊𝑊×3 denote an input video frame. The model generates a 

set of anchor boxes {𝑎𝑎𝑘𝑘}𝑘𝑘=1𝐾𝐾 . For each anchor, the network predicts: 
Bounding box offsets: 

 
(△ 𝑥𝑥𝑘𝑘 ,△ 𝑦𝑦𝑘𝑘 ,△𝑤𝑤𝑘𝑘 ,△ ℎ𝑘𝑘), (1) 

 
where △ 𝑥𝑥𝑘𝑘 denotes the horizontal offset of the bounding box center for 
anchor 𝑘𝑘; △ 𝑦𝑦𝑘𝑘  denotes the vertical offset of the bounding box center for 
anchor 𝑘𝑘; △𝑤𝑤𝑘𝑘  denotes the logarithmic scaling factor for the width of 
bounding box 𝑘𝑘; △ ℎ𝑘𝑘  denotes logarithmic scaling factor for the height of 
bounding box 𝑘𝑘; 𝑘𝑘 represents the index of the anchor box among total 
anchors. 

Keypoint coordinates: 
 

{𝑃𝑃𝑘𝑘𝑘𝑘}𝑖𝑖=16 ∈ ℝ2, (2) 
 



where 𝑃𝑃𝑘𝑘𝑘𝑘  denotes the 2D coordinate (x, y) of the 𝑖𝑖𝑡𝑡ℎ facial landmark for 
anchor 𝑘𝑘; and ℝ2 indicates each key point represented in 2D space. 

The final bounding box 𝑏𝑏𝑘𝑘 is computed as: 
 

𝑥𝑥𝑘𝑘′ = 𝑥𝑥𝑘𝑘𝑎𝑎 +△ 𝑥𝑥𝑘𝑘 .𝑤𝑤𝑘𝑘,
𝑎𝑎  𝑦𝑦𝑘𝑘′ = 𝑦𝑦𝑘𝑘𝑎𝑎 +△ 𝑦𝑦𝑘𝑘 . ℎ𝑘𝑘 

𝑎𝑎 , (3) 
 
where 𝑥𝑥𝑘𝑘′  and 𝑦𝑦𝑘𝑘′  denote the refined center coordinates of bounding box 𝑘𝑘; 
𝑥𝑥𝑘𝑘𝑎𝑎 and 𝑦𝑦𝑘𝑘𝑎𝑎 denote the anchor box center coordinates for anchor 𝑘𝑘; 𝑤𝑤𝑘𝑘,

𝑎𝑎  and 
ℎ𝑘𝑘,
𝑎𝑎  denote the anchor box width and height; and △ 𝑥𝑥𝑘𝑘 and △ 𝑦𝑦𝑘𝑘  denote the 

predicted offsets. 
 

𝑤𝑤𝑘𝑘′ = 𝑤𝑤𝑘𝑘𝑎𝑎 . exp(△𝑤𝑤𝑘𝑘) , ℎ𝑘𝑘′ = ℎ𝑘𝑘𝑎𝑎 . exp(△ ℎ𝑘𝑘), (4) 
 
where 𝑤𝑤𝑘𝑘′  and ℎ𝑘𝑘′  denote the refined width and height of bounding box 𝑘𝑘;  
𝑤𝑤𝑘𝑘𝑎𝑎 , and ℎ𝑘𝑘𝑎𝑎  denote the anchor width and height; △𝑤𝑤𝑘𝑘 and △ ℎ𝑘𝑘 predicted 
scaling factors; and exp(. )denotes the exponential function to ensure 
positive dimensions. 

The facial keypoints are then computed as: 
 

𝑃𝑃𝑘𝑘𝑘𝑘′ = 𝑃𝑃𝑘𝑘𝑘𝑘 . (𝑤𝑤𝑘𝑘′ , ℎ𝑘𝑘′ ) + (𝑥𝑥𝑘𝑘′ , 𝑦𝑦𝑘𝑘′ ), (5) 
 
where 𝑃𝑃𝑘𝑘𝑘𝑘′  denotes the refined location of landmark 𝑖𝑖 for anchor 𝑘𝑘; 𝑃𝑃𝑘𝑘𝑘𝑘  
represent the normalized keypoint coordinates; (𝑤𝑤𝑘𝑘′ , ℎ𝑘𝑘′ ) represent the 
bounding box size; and (𝑥𝑥𝑘𝑘′ ,𝑦𝑦𝑘𝑘′ ) represent the bounding box center. 

To reduce temporal jitter across frames, a common artifact in 
deepfake content, BlazeFace implements a weighted blending strategy in 
place of traditional Non-Maximum Suppression (NMS). The final refined 
bounding box is computed as: 

 

𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
∑ 𝑤𝑤𝑘𝑘 . 𝑏𝑏𝑘𝑘𝑘𝑘∈𝑁𝑁

∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈𝑁𝑁
, (6) 

 
where 𝑤𝑤𝑘𝑘 is the confidence score; 𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  denotes the final bounding box 
after blending; and 𝑁𝑁 is the set of overlapping anchor boxes. This enhances 
frame-to-frame consistency, helping the model distinguish genuine 
manipulations from jitter-induced artifacts, thereby increasing the reliability 
of detection. 

3.1.3. MediaPipe Face Mesh. After detecting the face regions using 
BlazeFace, the framework integrates MediaPipe Face Mesh to extract a 
dense set of 3D facial landmarks. This enables the detection of unnatural 



facial geometry and behavioral inconsistencies, which are often indicative 
of deepfake manipulations. 

MediaPipe Face Mesh predicts a total of 468 3D facial landmarks, 
represented as: 

 
𝐿𝐿 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧)}𝑖𝑖=1468 ∈ ℝ468×3, (7) 

 
where 𝐿𝐿 denotes the set of 3D landmark coordinates; and 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧 denote the 
coordinates of landmark 𝑖𝑖. 

These landmarks span the entire facial geometry, including contours, 
lips, nose, eyes, eyebrows, jawline, and forehead. The input to MediaPipe 
Face Mesh is the face crop provided by BlazeFace, resized and normalized 
to a tensor of size 128×128×3, consistent with the BlazeFace output 
bounding box region. This normalization removes scale and rotation 
variances, ensuring consistent landmark extraction across frames. The 
extracted landmarks are utilized to compute both geometric and behavioral 
features, which are highly sensitive to subtle facial manipulations 
introduced by generative adversarial networks (GANs). Several key features 
derived from these landmarks include: 

Eye Aspect Ratio (EAR) for blink analysis: 
 

𝐸𝐸𝐸𝐸𝐸𝐸 =
�|𝐿𝐿2 − 𝐿𝐿6|� + ||𝐿𝐿3 − 𝐿𝐿5||

2. ||𝐿𝐿1 − 𝐿𝐿4||
. (8) 

 
This ratio helps monitor blinking behavior and can reveal synthetic 

inconsistencies. 
Mouth Aspect Ratio (MAR) is used to identify lip-sync anomalies, 

which indicative of poor audio-visual alignment in deepfakes. 
Facial symmetry deviation is calculated by comparing corresponding 

landmarks on the left and right sides of the face to assess asymmetry 
introduced by manipulation. 

Temporal displacement of keypoints, which captures jitter or 
abnormal warping across consecutive frames, is a common artifact in 
manipulated videos. 

The combined BlazeFace + MediaPipe Face Mesh pipeline 
establishes a robust preprocessing foundation by ensuring precise face 
localization and dense landmark tracking, even under adverse conditions 
such as low lighting, occlusion, or blurred resolution. By analyzing 
temporal coherence across frames, the framework detects subtle geometric 
distortions, expression inconsistencies, and behavioral anomalies, traits 



rarely found in authentic content. Furthermore, it supports high-resolution 
tracking of facial dynamics, such as eye blinking, lip movement, and overall 
facial expression behavior, thereby improving deepfake detection reliability. 

3.2. XceptionCapsule-BiLSTM Net. Existing deepfake detection 
models often analyze individual frames, missing temporal cues such as head 
movements or inconsistent facial expressions, which limits their performance 
on subtle manipulations. To address this, we propose the XceptionCapsule-
BiLSTM Net, a hybrid architecture that processes sequences of N consecutive 
frames (16 in our experiments) to capture both spatial and temporal 
dependencies such as eye blinks, lip-syncing, and head motion. The model 
integrates Xception for high-resolution spatial feature extraction and CapsNet 
to preserve spatial hierarchies and inter-feature relationships. To further 
enhance temporal modeling, a BiLSTM layer is incorporated after the 
Capsule layer. The BiLSTM learns sequential dependencies across 
consecutive frame embeddings, enabling the network to recognize motion 
continuity and detect temporal inconsistencies such as abrupt facial transitions 
or unnatural movements. This addition ensures that the model processes video 
segments as coherent temporal sequences rather than isolated frames. Key 
layers include GAP for feature reduction, Flatten and Fully Connected layers 
for high-level representation, and a Sigmoid activation for binary 
classification. By combining spatial hierarchy learning (Xception + CapsNet) 
with temporal dependency modeling (BiLSTM), the proposed architecture 
significantly enhances robustness, accuracy, and generalization in detecting 
both obvious and subtle deepfakes in real-world scenarios. 

3.2.1. Xception Model. The Xception model is particularly effective 
for deepfake detection due to its superior capability in spatial feature 
extraction. Unlike conventional CNNs, which perform standard convolution 
over both spatial and channel dimensions simultaneously, Xception employs 
depthwise separable convolutions, dividing the process into two stages: 
depthwise convolution individually processes each input channel using 
separate filters, while pointwise convolution uses 1×1 convolutions to 
merge the results from the depthwise operation. This decomposition results 
in significant computational efficiency and a reduction in the number of 
learnable parameters, while still maintaining the capacity to capture 
essential visual features. In the proposed framework, Xception processes 
RGB face crops extracted by BlazeFace, with an input tensor of size 
128 × 128 × 3. The network outputs feature maps of shape [batch_size, h, 
w, c], where h, w, and c correspond to the height, width, and number of 
channels of the final convolutional layer. These feature maps retain rich 
spatial information, enabling the detection of subtle artifacts introduced by 



generative models, such as slight geometric distortions, texture 
inconsistencies, and skin tone mismatches.  

The model's enhanced spatial sensitivity enables it to effectively 
distinguish authentic faces from manipulated ones, even in high-resolution 
or minimally altered fake videos. The architectural pipeline of the Xception 
model is illustrated in Figure 3, showcasing its layered depthwise separable 
convolutional structure optimized for detailed pattern recognition in facial 
analysis. 

 

 
Fig. 3. Architecture of the Xception model 

 
3.2.2. Capsule Model. The CapsNet is designed to overcome the 

limitations of traditional CNNs, particularly their inability to preserve 
spatial hierarchies and capture part-whole relationships in visual data. 
Unlike CNNs, which use scalar activations and pooling operations that often 
discard spatial information, CapsNet represents features as vectors, thereby 
encoding both the presence and pose (e.g., position, orientation, 
deformation) of detected entities. 

The core building block of CapsNet is the capsule, a group of 
neurons whose activity vector 𝑢𝑢𝑖𝑖 ∈ ℝ𝑑𝑑 encodes the instantiation parameters 



of a specific object or object part. Capsules are organized hierarchically 
such that higher-level capsules model increasingly complex entities by 
aggregating information from lower-level capsules. 

To support this hierarchy, CapsNet introduces a dynamic routing 
mechanism between layers. Each capsule 𝑖𝑖 in the primary capsule layer 
predicts the output of capsule 𝑗𝑗 in the next layer using a learned 
transformation matrix 𝑊𝑊𝑖𝑖𝑖𝑖. The predicted output is computed as: 

 
𝑢𝑢�𝑗𝑗|𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 . (9) 

 
Here, 𝑢𝑢�𝑗𝑗|𝑖𝑖  is the prediction vector from capsule 𝑖𝑖 to capsule 𝑗𝑗, and 

𝑢𝑢𝑖𝑖  is the output vector of capsule 𝑖𝑖. These predictions are aggregated into a 
total input 𝑆𝑆𝑗𝑗  for capsule 𝑗𝑗 through a weighted sum of the predictions: 

 

𝑆𝑆𝑗𝑗 = �𝑐𝑐𝑖𝑖𝑖𝑖𝑢𝑢�𝑗𝑗|𝑖𝑖
𝑖𝑖

. (10) 

 
Here, 𝑐𝑐𝑖𝑖𝑖𝑖  are the coupling coefficients that determine the contribution 

of capsule 𝑖𝑖 to capsule 𝑗𝑗, and 𝑢𝑢�𝑗𝑗|𝑖𝑖 is the predicted output from capsule 𝑖𝑖. These 
coefficients are computed through a routing-by-agreement mechanism, using 
a softmax function over initial logits 𝑏𝑏𝑖𝑖𝑖𝑖 , which are iteratively updated: 

 

𝑐𝑐𝑖𝑖𝑖𝑖 =
exp(𝑏𝑏𝑖𝑖𝑖𝑖)

∑ exp (𝑏𝑏𝑖𝑖𝑖𝑖)𝑘𝑘
. (11) 

 
The final output of capsule 𝑗𝑗, denoted 𝑣𝑣𝑗𝑗 , is computed by applying a 

nonlinear function to 𝑠𝑠𝑗𝑗 . This function ensures that short vectors are shrunk 
to nearly zero length (representing absence), while longer vectors are scaled 
to a length slightly below 1 (representing its presence), without affecting 
their orientation: 

 

𝑣𝑣𝑗𝑗 =
∥ 𝑠𝑠𝑗𝑗 ∥2

1+∥ 𝑠𝑠𝑗𝑗 ∥2
.

𝑠𝑠𝑗𝑗
∥ 𝑠𝑠𝑗𝑗 ∥2

, (12) 

 
where the length ∥ 𝑣𝑣𝑗𝑗 ∥ represents the probability that the entity modeled by 
capsule 𝑗𝑗 exists, and the direction of 𝑣𝑣𝑗𝑗 encodes its pose and ∥ 𝑠𝑠𝑗𝑗 ∥ is the 
magnitude of input vector. This structure enables CapsNet to retain spatial 
hierarchies and model complex visual relationships, making it particularly 



effective for detecting subtle, hierarchical inconsistencies inherent in 
deepfake content. The architecture of the CapsNet is illustrated in Figure 4. 
 

 
Fig. 4. Structure of CapsNet 

 
This mechanism enables CapsNet to retain detailed spatial 

relationships and generalize effectively across transformations such as 
rotation and scaling. Consequently, CapsNet proves particularly effective in 
tasks requiring precise localization, pose estimation, and structure-
preserving representations, such as facial analysis, medical imaging, and 
deepfake detection. The proposed XceptionCapsule Net architecture 
integrates the powerful spatial feature extraction capabilities of the Xception 
network with the hierarchical modeling strength of CapsNet. By leveraging 
key architectural components such as Global Average Pooling, Flatten, 
Dense layers, Capsule layers, and a final Sigmoid activation function, the 
model robustly captures subtle visual artifacts and spatial dependencies. 
This well-structured design significantly improves the precision and 
reliability of distinguishing between real and fake videos. 

3.2.3. BiLSTM Layer. To capture temporal dependencies across 
consecutive video frames, a BiLSTM layer is introduced after the Capsule 
layer. While the Capsule Network effectively models spatial hierarchies and 
part–whole relationships, it does not account for sequential variations in 
motion or expression. The BiLSTM addresses this by processing sequential 
capsule feature embeddings from consecutive frames, learning both forward 
and backward temporal correlations. This enables the model to capture 
motion dynamics such as eye blinking, lip movement, and head rotation 
over time, patterns that are often inconsistent in manipulated content. 
Mathematically, if 𝑣𝑣𝑡𝑡 represents the capsule output at time 𝑡𝑡, the BiLSTM 
learns temporal features as: 

 



ℎ𝑡𝑡���⃗ = 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑓𝑓�𝑣𝑣𝑡𝑡 , ℎ𝑡𝑡−1��������⃗ �, (13) 
 

ℎ𝑡𝑡�⃖�� = 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑏𝑏�𝑣𝑣𝑡𝑡 , ℎ𝑡𝑡+1��������⃗ �, (14) 
 

ℎ𝑡𝑡�⃖�� = �ℎ𝑡𝑡���⃗ ;ℎ𝑡𝑡�⃖���. (15) 
 
This bidirectional formulation allows the model to analyze both past 

and future contextual dependencies, ensuring a holistic understanding of 
temporal behavior across frame sequences. The BiLSTM output is 
subsequently passed to the Global Average Pooling (GAP) layer for 
dimensionality reduction and further classification processing. 

3.2.4. GAP Layer. The GAP layer replaces traditional fully 
connected layers by computing the average of each feature map in the final 
convolutional layer. For a feature map 𝐹𝐹 ∈ ℝℎ×𝑤𝑤, GAP is computed as: 

 

𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹) =
1
ℎ.𝑤𝑤

��𝐹𝐹𝑖𝑖𝑖𝑖

𝑤𝑤

𝑗𝑗=1

ℎ

𝑖𝑖=1

, (16) 

 
where 𝐹𝐹 denotes the feature map, ℎ.𝑤𝑤 is the height and width of the feature 
map, and 𝐹𝐹𝑖𝑖𝑖𝑖 is the value at pixel (𝑖𝑖,𝑦𝑦). This significantly reduces the 
number of trainable parameters, thereby minimizing overfitting and 
preserving global contextual information. 

3.2.5. Flatten Layer. Following GAP, the flatten layer reshapes the 
output into a one-dimensional vector. It transforms the tensor from shape 
(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 1,1) into (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), serving as a bridge 
between convolutional feature extractors and subsequent high-level 
reasoning layers. 

3.2.6. Fully Connected (Dense) Layer. The dense layer functions as 
a fully connected neural layer, responsible for learning complex feature 
representations. It performs a linear transformation followed by a non-linear 
activation: 

 
𝑦𝑦 = 𝑓𝑓(𝑊𝑊𝑊𝑊 + 𝑏𝑏), (17) 

 
where 𝑥𝑥 is the input vector, 𝑊𝑊 is the weight matrix, 𝑏𝑏 is the bias vector, and 
𝑓𝑓 is an activation function. This layer enhances feature abstraction and 
captures semantic information crucial for distinguishing deepfakes. 



3.2.7. Sigmoid Activation Layer. The final layer employs the 
sigmoid activation function 𝜎𝜎(𝑥𝑥) for binary classification: 

 

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
. (18) 

 
This produces a probability score 𝑝𝑝 ∈ [0,1], where: 𝑝𝑝 ≈ 1 → 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 

𝑝𝑝 ≈ 0 → 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.  
It is compatible with binary cross-entropy loss, making it ideal for 

binary classification problems. 
 
Table 2. Input-Output Tensor Flow and Integration with MediaPipe 
Stage Input Tensor Output Tensor 

BlazeFace 128 × 128 × 3 [N, 4] bounding boxes + [N, 6, 2] 
keypoints 

MediaPipe Face 
Mesh 

128 × 128 × 3 (face 
crop) [468, 3] landmarks 

Xception 128 × 128 × 3 [batch_size, h, w, c] feature maps 
 

3.2.8. Fusion of MediaPipe Landmarks with XceptionCapsule 
Pipeline. The extracted 3D facial landmarks from MediaPipe Face Mesh are 
used as auxiliary behavioral and geometric features. Each frame’s landmark 
vector 𝐿𝐿 = [𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2, … , 𝑥𝑥468,𝑦𝑦468, 𝑧𝑧468] ∈ ℝ1404  is normalized 
and concatenated with the high-level spatial features 𝐹𝐹𝑠𝑠𝜖𝜖ℝℎ×𝑤𝑤×𝑐𝑐 obtained 
from the Xception encoder. 

To ensure compatibility in feature space, a linear projection layer  
𝜙𝜙(⋅) maps landmark features into the same latent dimension: 

 
𝐹𝐹𝑙𝑙 = ∅(𝐿𝐿) = 𝑊𝑊𝑙𝑙𝐿𝐿 + 𝑏𝑏𝑙𝑙 , (19) 

 
where 𝑊𝑊𝑙𝑙 ∈ ℝ𝑑𝑑×1404 and 𝑏𝑏𝑙𝑙 ∈ ℝ𝑑𝑑. The projected landmark vector is then 
fused with the Xception feature tensor using an additive attention-based 
blending: 
 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =∝.𝐹𝐹𝑠𝑠 + (1−∝).𝐹𝐹𝑙𝑙 , (20) 
 
where ∝∈ [0,1] controls the contribution of spatial and landmark features, 
optimized during training. The fused representation 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is passed to the 
CapsNet module, enabling the model to jointly reason about spatial, 
geometric, and behavioral cues. This process enhances sensitivity to micro-



expressions, eye-blink patterns, and lip-sync deviations that are often 
missed by frame-only CNNs. 

4. Results and Discussion. This section presents the evaluation of the 
proposed deep learning model for deepfake detection in facial videos. By 
leveraging spatial and temporal features in facial expressions and movements, 
the model accurately distinguishes authentic from manipulated content. The 
approach achieves high detection performance while maintaining 
interpretability and reliability – essential for real-world applications such as 
media forensics, digital trust frameworks, and security systems. 

4.1. Experimental Setup and Configuration. The proposed 
deepfake detection framework was implemented in Python 3.10 using 
Jupyter Notebook. TensorFlow was used for model development and 
training, while Scikit-learn handled data preprocessing, analysis, and 
evaluation. Experiments were conducted on a 64-bit Windows 10 system 
with a 7th-generation Intel Core i7 (2.8 GHz). Datasets were split 80/20 for 
training and testing, providing a stable platform for evaluating complex 
architectures such as XceptionCapsule Net. 

4.2. Dataset Description. 
Dataset 1: FaceForensics++ (FF++): The FF++ dataset [33] serves 

as a comprehensive and widely adopted benchmark for deepfake detection 
research. It comprises approximately 1,000 real video samples sourced from 
YouTube, each containing clear, stable, and front-facing facial recordings 
suitable for manipulation. From these original videos, over 4,000 
manipulated videos were synthesized using four distinct facial manipulation 
techniques: DeepFakes (autoencoder-based face replacement), FaceSwap 
(graphics-based replacement), Face2Face (real-time facial reenactment), 
and NeuralTextures (neural rendering-based synthesis). A notable strength 
of FF++ is its provision of multiple compression settings, including raw 
(uncompressed), high-quality (HQ), and low-quality (LQ). This simulates 
real-world video scenarios, such as those encountered on social media 
platforms. Additionally, FF++ includes bounding box annotations and, in 
some versions, manipulated region masks, thereby supporting extended 
tasks such as forgery localization in addition to classification. With separate 
training, validation, and test splits, FF++ provides a standardized and 
reproducible benchmark for evaluating deepfake detection models under 
varying levels of manipulation complexity and video quality. 

Dataset 2: Celeb-DF(v2). The Celeb-DF (v2) dataset [34], short for 
Celebrity DeepFake Dataset, addresses the limitations found in earlier 
datasets by offering more realistic and visually coherent deepfake videos. It 
consists of approximately 590 authentic video clips featuring 59 public 
figures, sourced from YouTube interviews that capture a diverse range of 



head poses, facial expressions, and lighting conditions. A total of 5,639 
deepfake videos were produced from these real videos using advanced 
deepfake synthesis methods, which significantly reduce visual artifacts such 
as lip mismatches, flickering, and facial warping. Unlike FF++, Celeb-DF 
(v2) focuses solely on high-quality deepfakes without introducing artificial 
compression, making it more representative of real-world high-fidelity 
forgeries. Although it lacks mask or manipulation annotations, its high 
visual fidelity and absence of synthetic glitches make it a valuable dataset 
for testing the generalization capability and robustness of detection models 
trained on noisier or lower-quality datasets. Together, FF++ and Celeb-DF 
(v2) provide complementary testbeds, one offering variety in manipulation 
and compression, and the other emphasizing realism and subtlety, making 
them suitable for the comprehensive evaluation of deepfake detection 
frameworks. 

4.3. Hyperparameter Configuration. The training process was 
carefully configured using a standard set of hyperparameters to optimize 
model performance while mitigating overfitting and ensuring 
generalizability. The key hyperparameter settings used in the proposed 
framework are summarized in Table 2. 
 

Table 2. Hyperparameter configuration 
Hyperparameter Value 

Optimizer Adam 
Learning Rate 0.001 

Batch Size 32 
Epochs 30 

Learning rate Scheduler ReduceLROnPlateau 
Regularization L2 

Dropout 0.5 
Validation split 5-fold 

 
The Adam optimizer [35] was selected for its ability to adapt the 

learning rate during training. A learning rate scheduler was employed to 
adjust the rate dynamically in response to changes in validation loss. L2 
regularization and dropout [36] were applied to reduce overfitting. A 5-fold 
cross-validation strategy was used to ensure robust performance estimation 
and evaluate the model’s generalization across different subsets of the data. 

4.4. Results and Analysis of the Preprocessing Stage. The 
preprocessing stage is crucial for ensuring accurate and reliable deepfake 
detection. Input videos are first decomposed into frames at uniform intervals 



to preserve temporal coherence. BlazeFace detects faces under varying 
conditions, and MediaPipe Face Mesh extracts detailed facial landmarks for 
precise alignment. This ensures high-quality, geometrically consistent facial 
regions are passed to the XceptionCapsule Net, allowing the model to focus 
on subtle manipulations such as unnatural warping, inconsistent 
expressions, and temporal irregularities. Figures 5–8 illustrate successful 
face detection and alignment on the FF++ and Celeb-DF (v2) datasets, 
demonstrating the effectiveness of the preprocessing pipeline. 
 

Original frames BlazeFace FaceMesh 
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Fig. 5. Preprocessing result of BlazeFace and FaceMesh of fake videos for FF++ 
dataset 
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Fig. 6. Preprocessing result of BlazeFace and FaceMesh of real videos for FF++ 
dataset 
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Fig. 7. Preprocessing result of BlazeFace and FaceMesh of fake videos for Celeb-DF 
(v2) dataset 
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Fig. 8. Preprocessing result of BlazeFace and FaceMesh of real videos for Celeb-DF 
(v2) dataset 

 
4.5. Performance Metrics. Performance metrics play a crucial role 

in assessing the effectiveness of deepfake detection models. A 
comprehensive set of metrics is used to quantify how well the model 
differentiates between authentic and manipulated content. These include 
classification metrics such as Accuracy, Precision, Recall, F1-Score, and 
Specificity. Collectively, these metrics provide detailed insights into the 
model’s prediction quality, robustness, and reliability under real-world 
conditions. 

The metrics used are defined as follows: 
i. Accuracy. The proportion of correctly classified samples (real 

or fake) among all samples: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
. (21) 

 
ii. Precision. The proportion of samples predicted as fake that are 

truly fake: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
. (22) 

 
iii. Recall. The proportion of actual fake samples that are correctly 

identified: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
. (23) 

 
iv. F1-Score. The harmonic mean of precision and recall, useful 

for imbalanced datasets: 



𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
2. (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

. (24) 

 
v. Specificity. The proportion of real (negative class) samples 

correctly identified: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
. (25) 

 
vi. Area under the ROC Curve (AUC). This metric is typically 

used with the ROC (Receiver Operating Characteristic) curve to evaluate 
binary classifiers. It measures the model’s ability to distinguish between the 
two classes (e.g., real vs. fake). Mathematically, it can be expressed as 
follows: 
 

𝐴𝐴𝐴𝐴𝐴𝐴 = � 𝑇𝑇𝑇𝑇𝑇𝑇(𝐹𝐹𝐹𝐹𝐹𝐹)𝑑𝑑(𝐹𝐹𝐹𝐹𝐹𝐹)
1

0
, (26) 

 
where 𝑇𝑇𝑇𝑇𝑇𝑇 and 𝐹𝐹𝐹𝐹𝐹𝐹 are the True Positive Rate and False Positive Rate at 
threshold 𝑖𝑖, and 𝑛𝑛 is the number of thresholds used. 

4.5.1. Cross-Validation Evaluation. To ensure robustness and 
generalization, a 5-fold cross-validation strategy is adopted. The dataset is 
partitioned into five equally sized subsets (folds). In each iteration, four 
folds are used for training, and the remaining fold is used for testing. This 
process is repeated five times, ensuring each fold serves exactly once as a 
test set. The final performance metrics are computed as the average of 
results across all folds, thereby reducing both variance and bias in model 
evaluation. This cross-validation approach is particularly valuable for 
deepfake detection, where data heterogeneity (in lighting, pose, and 
manipulation type) can influence model behavior. Table 3 presents the 
detailed results obtained from the 5-fold cross-validation on the FF++ 
dataset and Celeb-DF (v2) datasets, respectively. Additionally, Figure 9 
illustrates the training and validation accuracy and loss curves across the 
five folds for the FF++ dataset, providing insights into model convergence 
and overfitting tendencies.  

 



 
Fig. 9. Cross-validation for the accuracy and loss for FF++ dataset  

 
Table 2. Cross-Validation Performance of the Proposed Model on FF++ and Celeb-

DF (v2) Datasets 
Datasets Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Mean ± 95% 

CI 
FF++ Accuracy 0.9667 0.9771 0.9510 0.9708 0.9708 0.9673 0.9673 ± 0.009 

Precision 0.9737 0.9718 0.9456 0.9733 0.9753 0.9679 0.9679 ± 0.011 
Recall 0.9612 0.9837 0.9591 0.9693 0.9673 0.9681 0.9681 ± 0.009 
F1-score 0.9671 0.9777 0.9523 0.9713 0.9713 0.9679 0.9679 ± 0.010 
Specificity 0.9724 0.9703 0.9427 0.9724 0.9745 0.9665 0.9665 ± 0.012 
AUC 0.9978 0.9962 0.9938 0.9957 0.9970 0.9961 0.9961 ± 0.001 

Celeb-
DF v2 

Accuracy 0.9902 0.9872 0.9931 0.9921 0.9843 0.9894 0.9894 ± 0.003 
Precision 0.9987 0.9778 0.9906 0.9943 0.9923 0.9907 0.9907 ± 0.008 
Recall 0.9924 0.9981 0.9962 0.9905 0.9773 0.9909 0.9909 ± 0.007 
F1-score 0.9905 0.9878 0.9934 0.9924 0.9848 0.9898 0.9898 ± 0.005 
Specificity 0.9877 0.9754 0.9897 0.9938 0.9918 0.9877 0.9877 ± 0.007 
AUC 0.9998 0.9992 0.9999 0.9992 0.9989 0.9994 0.9994 ± 0.001 

 
Table 2 presents the 5-fold cross-validation results of the proposed 

deepfake detection model on the FF++ and Celeb-DF (v2) datasets, 
including average values and 95% confidence intervals. For FF++, the 
model achieved an average accuracy of 96.73% with a mean AUC of 
0.9961, demonstrating strong discriminative power. Precision, recall, and 
F1-score were consistently high across all folds, with mean values of 
96.79%, 96.81%, and 96.79%, respectively. Similarly, on the Celeb-DF (v2) 
dataset, the model achieved a mean accuracy of 98.94% and an AUC of 
0.9994, with precision, recall, and F1-score all above 98.9%, indicating 
highly reliable performance. The low 95% confidence intervals across all 
metrics highlight the model’s robustness and consistent performance across 
different folds, confirming its generalization capability across diverse 
datasets and challenging deepfake scenarios. Figure 10 represents the cross-
validation training and validation accuracy and loss for Celeb-DF (v2) 



dataset, further corroborating the model's stable performance across 
different datasets and data distributions. 

 

 
Fig. 10. Cross-validation for the accuracy and loss for Celeb-DF (v2) dataset 

 
Figures 11 and 12 illustrate the training and validation accuracy and 

loss curves for the FF++ and Celeb-DF (v2) datasets, respectively, 
providing visual confirmation of the model’s convergence and 
generalization effectiveness across both datasets. 
 

 
Fig. 11. Training and validation accuracy and loss of dataset 1 

 

 
Fig. 12. Training and validation accuracy and loss of dataset 2 



4.5.2. Confusion Matrix. A confusion matrix serves as a valuable tool 
for assessing the performance of classification models, providing an in-depth 
comparison between actual and predicted class labels. It categorizes outcomes 
into True Positives (TP), True Negatives (TN), False Positives (FP), and False 
Negatives (FN), facilitating accurate computation of metrics such as accuracy, 
precision, recall, and error rates. This visualization is especially useful for 
evaluating how well a model differentiates between classes, making it highly 
effective in binary classification scenarios such as deepfake detection. 

Figure 13 presents the confusion matrices of the Dataset 1 and the 
Dataset 2. 

 

 
a) b) 

Fig. 13. Confusion Matrix: a) dataset 1, b) dataset 2 
 

For Dataset 1(a), the model accurately classified 482 real and 527 fake 
instances. The model misclassified only 5 genuine instances as fake and 
incorrectly identified 2 manipulated samples as authentic. This distribution 
reflects excellent model performance with minimal misclassification, indicating 
high precision, recall, and overall robustness in detecting facial manipulations. 

For Dataset 2(b), the model correctly identified 458 real and 471 
fake videos. However, it misclassified 13 real instances as fake and 19 fake 
instances as real, reflecting a slightly higher error rate compared to 
Dataset 1. Despite this, the matrix exhibits strong diagonal dominance, 
affirming the model’s capacity to generalize well to more challenging and 
realistic deepfake samples. 

Overall, the confusion matrices underscore the model’s high 
discriminative power and low error rate, particularly with Dataset 1, while 
still maintaining robust performance on the more visually complex Dataset 2. 

4.5.3. ROC Curve. The ROC curve illustrates the relationship between 
the TPR, also known as sensitivity, and the FPR across varying classification 
thresholds. By visualizing this trade-off, the ROC curve provides insight into 
the model’s ability to discriminate between classes regardless of the decision 
threshold. A key metric derived from the ROC curve is the AUC, which offers a 



single scalar value to summarize performance. An AUC value closer to 1.0 
indicates a high degree of separability between the positive and negative classes, 
signifying excellent classification capability. Figure 14 shows the ROC curves 
for (a) FF++ dataset and (b) Celeb-DF (v2) dataset. 

 

  
a) b) 

  
c) d) 

 
e) 
a) 

ROC Curve – Fold 1     

        

    

    ROC Curve – Fold 2

        

    

        

ROC Curve – Fold 3     

    

        

    ROC Curve – Fold 4

    

        

        

ROC Curve – Fold 5



  
a) b) 

  
c) d) 

 
e) 
b) 

Fig. 14. ROC curve for: a) FF++ dataset, b) Celeb-DF (v2) dataset 
 

The ROC curves, averaged across the 5-fold cross-validation, 
demonstrate the model’s exceptional classification ability. For the FF++ 
dataset (a), the model achieved an average AUC of 0.9961, indicating a very 
high true positive rate with a minimal false positive rate across all folds. For 
the Celeb-DF (v2) dataset (b), the model attained an average AUC of 0.9994, 
reflecting near-perfect separability between real and manipulated content. 
These ROC curves, based on averaged cross-validation results, reaffirm the 
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high discriminative power and robustness of the proposed framework across 
different datasets, diverse conditions, and various manipulation techniques. 

4.6. Comparative Analysis. This section presents a comprehensive 
comparative analysis of the proposed deepfake detection framework against 
a range of existing state-of-the-art approaches. The evaluation considers two 
primary performance metrics such as Accuracy and AUC measured across 
two benchmark datasets: FF++ and Celeb-DF (v2). The compared methods 
include both conventional CNN models (e.g., VGG16, InceptionV3, 
ResNet50, MobileNetV2, EfficientNet variants) and advanced architectures 
that employ hybrid learning, attention, and frequency-domain features such 
as MesoNet, F3-Net, RFM, GRAM, GFFD, SPSL, M2TR, GocNet, F2-
Trans, BMNet, and Self-Supervised BEiT-HPR. Tables 5 and 6 summarize 
the comparative results on both datasets. 

 
Table 5. The overall comparison for the FF++ dataset 

Methods FF++ dataset 
Accuracy (%) AUC(%) 

Face cutout [23] 84 80 
DWT [24] 95.13 95.49 

ResNet-Swish-BiLSTM [25] 96.23 - 
BMNet [26] 95.54 98.60 
MLP [27] 98.00 99.94 

Self-Supervised BEiT-HPR [28] 83.92 - 
ConvNext-PNe [29] 97.78 99.25 

CViT2 [30] 94.80 96.00 
MesoNet [31] 60.51 74.55 

MesoNet-Inc4 [31] 82.15 83.64 
Xception [31] 89.84 98.14 

EfficientNetb4 [31] 91.89 98.45 
F3-Net [31] 93.78 98.55 
RFM [31] 91.59 98.37 

GRAM [31] 92.21 97.81 
GFFD [31] 90.23 98.28 
SPSL [31] 91.50 95.32 
M2TR [31] 94.08 98.43 
GocNet [31] 91.67 97.58 

F2-Trans [31] 96.60 99.24 
MSTN [31] 95.78 95.78 
VGG16 [32] 78.39 78.00 

InceptionV3 [32] 51.00 50.00 
ResNet50 [32] 89.67 89.00 
Xception [32] 73.86 73.00 

MobileNetV2 [32] 76.63 76.00 
EfficientNetB7 [32] 83.66 84.00 

Proposed 96.67 99.78 



Table 6. The overall comparison for the Celeb-DF (v2) dataset  

Methods Celeb-DF (v2) dataset 
Accuracy (%) AUC(%) 

Face cutout [23] 92 93 
DWT [24] 95.49 95.49 

ResNet-Swish-BiLSTM [25] 78.33 - 
BMNet [26] 80.20 75.72 
MLP [27] 96.33 97.05 

Self-Supervised BEiT-HPR [28] 98.25 - 
ConvNext-PNe [29] 97.09 98.99 

CViT2 [30] 98.30 99.00 
FWA [31] 50.74 55.71 
CviT [31] 51.67 60.22 

Capsule [31] 63.35 62.70 
MesoNet [31] 42.80 52.31 
Xception [31] 55.92 67.23 
BMNet [31] 80.20 75.72 
VGG16 [32] 67.09 68.00 

InceptionV3 [32] 55.12 52.00 
ResNet50 [32] 67.09 68.00 
Xception [32] 59.22 63.00 

MobileNetV2 [32] 63.24 65.00 
EfficientNetB7 [32] 70.08 69.00 

Proposed 99.31 99.99 
Footnote: The accuracy and AUC values for the proposed method correspond to the best-
performing fold (Full Model) from the cross-validation experiment, used for fair comparison 
with state-of-the-art single-model results. Mean accuracy across all five folds (98.94%) is 
reported separately in Table 2, confirming consistent model performance and stable 
generalization. 

 
Table 5 illustrates the comparative performance of different deepfake 

detection methods on the FF++ dataset. The proposed model achieves the 
highest performance, with an accuracy of 96.67% and an AUC of 99.78%, 
thereby outperforming both classical CNN-based methods and modern 
hybrid architectures. Traditional CNN-based models such as VGG16, 
InceptionV3, and MobileNetV2 show moderate performance with 
accuracies between 51% and 83%, indicating their limited ability to capture 
complex spatial-temporal inconsistencies present in manipulated videos. 
Recent architectures such as MesoNet, MesoNet-Inc4, and Xception deliver 
improved results but still fall short in generalization across diverse forgery 



types. Advanced techniques such as EfficientNetB4, F3-Net, RFM, GRAM, 
M2TR, and F2-Trans achieve higher AUC values (above 98%), reflecting 
progress in feature extraction and classification precision. However, the 
proposed XceptionCapsule-based framework outperforms all competitors, 
exhibiting near-perfect discriminative capability as evidenced by its 99.78% 
AUC. This superior performance can be attributed to the model’s ability to 
jointly capture spatial texture cues and temporal motion inconsistencies, 
while the integrated Capsule Network layer enhances dynamic feature 
representation and resilience to occlusions and compression artifacts.  

Table 6 presents the comparative evaluation of the proposed model 
against state-of-the-art methods on the Celeb-DF (v2) dataset, which is 
known for its high-quality and challenging deepfake content. The proposed 
framework demonstrates remarkable superiority, achieving an accuracy of 
99.31% and an AUC of 99.99%, substantially surpassing all prior methods. 
While traditional CNN-based detectors such as ResNet50, VGG16, and 
InceptionV3 achieve accuracies below 70%, specialized architectures such 
as BMNet, CViT, and Capsule Networks also fail to generalize effectively 
to complex manipulations, with most methods performing below 81% 
accuracy. On the other hand, transformer-based and hybrid learning 
approaches, such as ConvNext-PNet, CViT2, and Self-Supervised BEiT-
HPR, show improved performance with accuracies exceeding 97%, yet they 
still fall short of the proposed model’s near-perfect results. The performance 
of the proposed model on Celeb-DF (v2) confirms its robust generalization 
ability and strong resistance to unseen manipulations, even under high-
fidelity synthesis and compression variations. 

4.7. Ablation Study. To assess the contribution of each module 
within the proposed framework, an ablation experiment was conducted on 
the FF++ and Celeb-DF (v2) datasets. The analysis evaluates performance 
gains achieved by progressively integrating CapsNet, BlazeFace, MediaPipe 
FaceMesh, and the BiLSTM layer with the baseline Xception model. 

Table 7 presents the ablation study results illustrating the 
contribution of each component integrated into the proposed deepfake 
detection framework. The baseline Xception model achieved 94.26% 
accuracy and 97.85% AUC, establishing the initial performance. 
Incorporating the CapsNet module improved feature representation and 
slightly increased overall accuracy to 96.03%, with an AUC of 98.91%. 
When combined with BlazeFace, the framework achieved improved face 
localization and yielded 96.30% accuracy and 99.23% AUC. The 
integration of MediaPipe FaceMesh further enhanced landmark precision, 
resulting in 96.50% accuracy and 99.64% AUC. When the BiLSTM layer 
was introduced, the model achieved 96.58% accuracy and 99.70% AUC, 



confirming its contribution in learning temporal dependencies and motion-
based cues such as blinking, head rotation, and lip synchronization. Finally, 
the full model, integrating all modules (Xception, CapsNet, BlazeFace, 
MediaPipe Face Mesh, and BiLSTM), attained the highest performance: 
96.67% accuracy, 97.31% precision, 96.12% recall, 96.71% F1-score, and 
99.78% AU. This demonstrates that the synergistic integration of spatial, 
geometric, and temporal components significantly enhances deepfake 
detection reliability and robustness. 

 
Table 7. Ablation Study Showing the Impact of Different Model Components on 

Deepfake Detection Performance on FF++ Dataset 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

AUC 
(%) 

Xception only 94.26 93.40 95.10 94.24 97.85 
Xception + 
CapsNet 96.03 95.71 95.80 96.07 98.91 

XceptionCapsule + 
BlazeFace only 96.30 96.95 95.95 96.20 99.23 

XceptionCapsule + 
MediaPipe 
FaceMesh 

96.50 97.20 96.05 96.40 99.64 

XceptionCapsule + 
BiLSTM 96.58 97.08 96.11 96.45 99.70 

Full Model 96.67 97.31 96.12 96.71 99.78 
 

On the Celeb-DF (v2) dataset (Table 2), which consists of high-
fidelity and visually coherent deepfakes, the incremental impact of each 
module is even more pronounced. The baseline Xception model achieved 
92.45% accuracy and 96.72% AUC, struggling to capture subtle 
manipulations. The addition of CapsNet improved the detection of fine-
grained artifacts, reaching 95.84% accuracy. Incorporating BlazeFace 
enhanced face localization accuracy, achieving an accuracy of over 97%. 
MediaPipe Face Mesh further refined geometric consistency, leading to 
98.72% accuracy and 99.73% AUC. Introducing the BiLSTM module 
significantly improved temporal understanding and motion-based detection, 
achieving 99.01% accuracy and 99.88% AUC by modeling frame-to-frame 
dependencies and identifying inconsistencies in facial dynamics. The full 
model achieved the best results, with 99.31% accuracy and nearly perfect 
AUC (99.99%), confirming that combining hierarchical spatial modeling, 
geometric precision, and temporal learning substantially improves deepfake 
detection performance and generalization in complex real-world scenarios. 



Table 8. Ablation Study Showing the Impact of Different Model Components 
on Deepfake Detection Performance on Celeb-DF (v2) Dataset 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

AUC 
(%) 

Xception only 92.45 91.62 93.01 92.30 96.72 
Xception + CapsNet 95.84 95.41 95.97 95.69 98.44 
XceptionCapsule + 
BlazeFace only 97.25 97.10 97.42 97.26 99.11 

XceptionCapsule + 
MediaPipe FaceMesh 98.72 98.45 98.80 98.62 99.73 

XceptionCapsule + 
BiLSTM 99.01 98.80 99.25 99.02 99.88 

Full Model 99.31 99.06 99.62 99.34 99.99 
 

4.8. Discussion. The proposed Face and Motion-Aware Detection 
Framework effectively integrates spatial and temporal features to detect 
subtle facial artifacts and motion inconsistencies in deepfakes. BlazeFace 
provides robust face localization under varying conditions, and MediaPipe 
Face Mesh ensures precise landmark extraction. The XceptionCapsule Net 
preserves hierarchical spatial relationships, enabling the detection of fine-
grained forgery cues. Additionally, the integration of a BiLSTM layer 
enables the framework to model temporal dependencies by learning motion 
dynamics such as blinking, lip movement, and head rotation across 
consecutive frames, enhancing temporal consistency in detection. The 
experimental results on the FF++ and Celeb-DF (v2) datasets demonstrate 
strong generalization, outperforming several state-of-the-art methods. 
Ablation studies confirm the contribution of each module, highlighting the 
robustness and adaptability of the framework to different manipulation 
techniques and challenging conditions such as low resolution, compression, 
and subtle manipulations. These characteristics position the framework as a 
promising solution for real-world media forensics and content 
authentication.  

5. Conclusion. This study introduces a robust Face and Motion-
Aware Detection Framework that advances deepfake detection by 
combining spatial and temporal analysis. Benchmark evaluations 
demonstrate its superior performance and generalization compared to 
existing methods. The framework’s design allows adaptability to various 
types of manipulations and real-world conditions.  For future work, the 
framework can be extended to multi-modal analysis by incorporating audio 
and textual cues, which would improve the detection of lip-sync or 
dialogue-incoherent deepfakes. Further enhancements could include 
transformer-based architectures to strengthen temporal modeling. Finally, 



testing on in-the-wild deepfake samples and evaluating the feasibility of 
real-time deployment on social media or video streaming platforms are 
crucial steps for ensuring the practical applicability of the system against 
increasingly sophisticated generative manipulations. 
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А. РАДЖИВ, РАВИРАДЖ П. 
МОДЕЛЬ ДЛЯ ОБНАРУЖЕНИЯ ДИПФЕЙКОВ С УЧЕТОМ 
ПРОСТРАНСТВЕННО-ВРЕМЕННЫХ И ПОВЕДЕНЧЕСКИХ 

ПРИЗНАКОВ НА ОСНОВЕ ОБЪЕДИНЕНИЯ 
XCEPTIONCAPSULE 

 
Раджив А., Равирадж П. Модель для обнаружения дипфейков с учетом 
пространственно-временных и поведенческих признаков на основе объединения 
XceptionCapsule. 

Аннотация. Обнаружение дипфейков по-прежнему представляет собой серьезную 
проблему, главным образом из-за ключевых ограничений существующих методов, 
включая зависимость от анализа отдельных кадров, уязвимость к видео низкого 
разрешения или сжатым видео, а также неспособность улавливать временные 
несоответствия. Кроме того, традиционные методы обнаружения лиц часто дают сбой 
в сложных условиях, таких как плохое освещение или окклюзия, а многие модели не 
справляются с тонкими манипуляциями из-за неадекватного извлечения признаков 
и переобучения на ограниченных наборах данных. Для устранения недостатков 
существующих подходов к обнаружению дипфейков в данном исследовании 
предлагается система обнаружения лиц и движений, которая объединяет как 
пространственную, так и временную информацию. Работа системы начинается с этапа 
предварительной обработки, на котором видеокадры извлекаются с фиксированной 
частотой для обеспечения временной согласованности. Области лица и детальные 
ориентиры точно определяются с помощью BlazeFace и MediaPipe Face Mesh. Затем эти 
признаки обрабатываются с помощью предлагаемой сети XceptionCapsule Net, которая 
сочетает в себе возможности извлечения пространственных признаков модели Xception 
с иерархическим и учитывающим ракурс представлением капсульных сетей (CapsNet), 
а также возможностью моделирования временных зависимостей двунаправленного слоя 
долгой краткосрочной памяти (BiLSTM). Архитектура включает в себя глобальный 
усредняющий пулинг, сглаживание и полносвязные слои с сигмоидной функцией 
активации для бинарной классификации. Обширные оценки на наборах данных 
FaceForensics++ (FF++) и Celeb-DF демонстрируют высокую производительность, 
достигая точности до 99,31% и площади под кривой (AUC) 99,99%. Результаты 
подтверждают эффективность, точность и обобщающую способность системы для видео 
различного качества и сценариев манипуляций.  

Ключевые слова: обнаружение дипфейков, XceptionCapsule Net, Face Mesh, 
BlazeFace, извлечение лицевых ориентиров, видеокриминалистика. 
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