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Осипов В.Ю. Устойчивость интеллектуальной обработки сигналов потоковыми 
рекуррентными нейронными сетями с непрерывным обучением. 

Аннотация. Интеллектуальная нейросетевая обработка различных сигналов с 
непрерывным обучением представляет большой как научный, так и практический 
интерес. Для такой обработки наряду с другими решениями применяют потоковые 
импульсные рекуррентные нейронные сети (РНС) с расширенными функциональными 
возможностями. Однако для этих РНС во многом не исследованы вопросы обеспечения 
их устойчивого функционирования. Преследуется цель повышения устойчивости 
потоковых импульсных РНС за счет разработки новых методов интеллектуальной 
обработки сигналов с непрерывным обучением. В интересах этого уточняются 
возможности этих РНС и анализируются подходы к обеспечению их устойчивости при 
обучении и генерации сигналов. Осуществлена формализация потоковой РНС в виде 
относительно конечного операционного автомата. Предложен новый метод устойчивой 
интеллектуальной обработки сигналов усовершенствованной РНС с непрерывным 
обучением. Рассмотрены схемы решения различных интеллектуальных задач анализа и 
синтеза предлагаемым методом. Приведены результаты моделирования, 
подтверждающие работоспособность предложенного метода и возможности повышения 
устойчивости РНС при непрерывном обучении и генерировании сигналов. Показана 
достижимость устойчивого баланса между запоминаемой и постепенно забываемой 
информацией в РНС с оперативной адаптацией к изменяющимся внешним условиям.  

Ключевые слова: нейронная сеть, интеллектуальность, устойчивость, непрерывное 
обучение, генерация сигналов. 

 
1. Введение. Успешность решения интеллектуальных задач 

потоковыми импульсными рекуррентными нейронными сетями (РНС) 
во многом зависит от устойчивости их функционирования. В качестве 
таких задач для РНС могут выступать распознавание и 
прогнозирование различных событий, генерация текстов и 
видеоинформации, нейроуправление трудно формализуемыми 
процессами, фильтрация сигналов и другие [1]. Творческие задачи 
должны реализовываться РНС в общем случае в условиях изменения 
законов поведения воспринимаемых потоков сигналов.  

Для оперативной адаптации потоковых РНС [2, 3] и других 
нейронных сетей [4 – 6] к изменяющимся условиям предусматривается 
непрерывное обучение, со своей спецификой их функционирования. 
При таком обучении с ограниченным объемом памяти РНС должны не 
только запоминать входные сигналы и результаты обработки, но и 
забывать устаревшую информацию. Должен соблюдаться некоторый 
баланс между запоминанием и забыванием информации. Обучение 
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решению одной творческой задачи не должно приводить к 
катастрофическому забыванию информации о другой задаче. 
Потоковые РНС не должны перегружаться входными сигналами. 
Следует исключать перевозбуждение этих РНС. Число одновременно 
возбужденных нейронов и текущий суммарный вес (проводимостей) 
синапсов РНС должны находиться в допустимых пределах.  

Для соблюдения этих требований необходимо учитывать 
специфику потоковых импульсных РНС с непрерывным обучением, а 
также иметь соответствующие методы обеспечения устойчивости 
таких сетей.  

Несмотря на наличие в составе потоковых импульсных РНС 
блока управления, позволяющего в некоторой мере повысить их 
устойчивость, проблема, связанная с нею, остается. Заметим, что эта 
проблема характерна не только для потоковых РНС, но и других 
нейронных сетей с непрерывным обучением.  

Известны решения, касающиеся общих подходов к обеспечению 
устойчивости РНС [7 – 9]. Предложен ряд критериев, моделей и 
методов для реализации асимптотической и равномерной 
устойчивости по Ляпунову [10 – 12]. С формальных позиций эта 
устойчивость зависит от характеристик входных потоков сигналов, 
функций переходов РНС и ее элементов из одних состояний в другие, 
а также характеристик состояний сети (содержания ее памяти). 

Если с требованиями к устойчивости РНС относительно 
прозрачная ситуация, то с конкретными методами их соблюдения 
много открытых вопросов. Они касаются методов устойчивого 
нейросетевого запоминания полезной информации и забывания 
устаревших данных, вызова из памяти результатов обработки, 
исключения перевозбуждения РНС и других аспектов. Необходима 
разработка новых методов устойчивой интеллектуальной обработки 
сигналов потоковыми РНС с непрерывным обучением. 

В интересах решения этой задачи анализируются особенности 
потоковых РНС с непрерывным обучением и известные методы 
обеспечения устойчивости. Рассматривается обобщенная модель 
потоковой РНС в виде относительно конечного автомата. 
Предлагается новый метод устойчивой интеллектуальной обработки 
сигналов усовершенствованной потоковой РНС с непрерывным 
обучением и генерацией связанных сигналов. Раскрываются 
особенности решения интеллектуальных задач предлагаемым методом. 
Приводятся результаты моделирования. Формулируются практические 
рекомендации по обеспечению устойчивости потоковых РНС.  
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2. Особенности потоковых РНС и известных методов 
обеспечения устойчивости. Еще до появления нейронных сетей – 
трансформеров [13], составляющих основу современных больших 
языковых моделей ChatGPT, Deep Seek и подобных, в [2] показаны 
возможности генерации потоковыми РНС последовательностей слов и 
других сигналов с продвижением их по сети без искажений. При этом 
обращено внимание на необходимость обеспечения устойчивого 
функционирования этих РНС, как при непрерывном обучении, так и 
генерации сигналов с запоминанием результатов. Для этого 
предусматривался поиск методов, обеспечивающих баланс между 
возбуждающими и тормозящими воздействиями в потоковых РНС. 

Особенностями таких РНС выступают следующие. На входы 
потоковых РНС подаются последовательные совокупности единичных 
импульсов (СЕИ), несущие всю информацию об исходных сигналах. 
Продвигаясь по РНС СЕИ связываются друг с другом, а результаты 
связывания запоминаются на элементах сети. В РНС формируется 
постоянно обновляемая модель воспринимаемых потоков сигналов, 
которая используется для решения творческих задач.  

В базовом варианте это двухслойные РНС (рисунок 1) с блоком 
управления ассоциативным взаимодействием обрабатываемых 
сигналов в зависимости от текущих состояний слоев.  

 

 
Рис. 1. Обобщенная структура потоковой импульсной рекуррентной 

нейронной сети 
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В этой РНС каждый нейрон одного слоя в общем случае связан 
синапсами со всеми нейронами другого слоя. Нейроны одного и того 
же слоя связей не имеют. Время задержки единичных импульсов в 
образуемых двухслойных контурах РНС меньше времени 
невосприимчивости нейронов после возбуждения. 

За счет реализуемых пространственных сдвигов СЕИ, 
передаваемых от слоя к слою, РНС могут наделяться различными 
(линейными, спиральными, петлевыми и другими) логическими 
структурами. При этом слои РНС разделяются на одинаковые 
логические поля, а обрабатываемые СЕИ продвигаются вдоль слоев. 
Однозначное соответствие между входным и выходным языками РНС 
обеспечивается за счет приоритетности сильных связей между 
нейронами.  

За счет блока управления может осуществляться вызов данных 
из памяти РНС в различных направлениях, а также регулироваться 
загрузка сети СЕИ. Такими РНС могут одновременно обрабатываться 
сигналы различных модальностей.  

Для решения творческих задач с непрерывным обучением могут 
применяться многоуровневые потоковые импульсные РНС. В таких 
РНС непрерывное обучение реализуется прежде всего на нижних 
уровнях, а решение творческих задач осуществляется на высоких 
уровнях. Также для этого могут использоваться пары идентичных 
потоковых РНС [14]. В этом случае первая РНС функционирует в 
режиме непрерывного обучения, а на второй сети решаются 
творческие задачи на основе информации, периодически считываемой 
с первой РНС. 

Без непрерывного обучения потоковых РНС невозможно 
оперативно адаптироваться к изменяющимся внешним условиям, что, 
несомненно, приводит к снижению качества выдаваемых результатов. 
Однако непрерывное обучение РНС с ограниченными возможностями 
памяти должно предусматривать не только запоминание новых 
сигналов, но и забывание ненужной информации. При этом в РНС не 
должен проявляться эффект катастрофического забывания ранее 
полученной информации при решении новых задач. Для разрешения 
этого противоречия при обучении последовательными данными 
применяют подходы на основе регуляризации, динамических 
архитектур и дополнительной памяти [8]. Подходы регуляризации 
предусматривают ограничения на обновление определенных 
параметров РНС. К ним относятся эластичная консолидация веса [15], 
синаптический интеллект [16], использование слоев расширения [17], 
неперекрывающихся и ортогональных представлений [18]. Для 
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преодоления катастрофического забывания применяют контекстно-
зависимые случайные подсети с упорядочиванием изменения весов [8]. 
Подходы динамической архитектуры предусматривают добавление 
нейронных ресурсов [19]. Методы, связанные с дополнительной 
памятью, основаны на использовании вторичных сетей для генерации 
шаблонов для повторения ранее изученной информации, а также 
внешней памяти, увеличивающейся при поступлении новой 
информации [8]. Также ориентируются на применимость гиперсетей, 
позволяющих запоминать информацию с ее сжатием. Известен также 
ряд работ, посвященных исследованию асимптотической устойчивости 
различных по структуре РНС [11, 20 – 22]. В нашем случае интерес 
представляют, прежде всего, методы обеспечения равномерной 
устойчивости РНС с непрерывным обучением. 

Обычно для динамических систем устойчивость понимают в 
терминах критерия типа «ограниченный вход – ограниченный выход» 
(bounded input – bounded output stability criterion – BIBO) [7]. Согласно 
этому критерию выход системы не должен неограниченно возрастать в 
результате подачи ограниченного входного сигнала [23]. Заметим, что 
BIBO устойчивость – это конкретный вид робастности, говорящий об 
устойчивости системы при ограниченных входных сигналах. Критерий 
хорошо подходит для линейных динамических систем. Считают [7], 
что критерий BIBO не целесообразно применять к нейронным сетям, 
так как подобные нелинейные динамические системы являются BIBO 
устойчивыми, поскольку в конструкцию нейронов встроена 
нелинейность с насыщением. Однако этот критерий иногда может 
быть полезен для анализа устойчивости РНС с непрерывным 
обучением. Когда речь идет о нелинейных динамических системах, к 
которым относятся нейронные сети, то подразумевают устойчивость 
по Ляпунову [7]. При этом заметим, что BIBO устойчивость можно 
рассматривать как специальный случай устойчивости по Ляпунову. 

В соответствии с теорией устойчивости Ляпунова [10] 
функционирование РНС можно считать равномерно устойчивым, 
когда для любого положительного числа ε можно указать 
положительное число δ, такое, что из неравенства ||N(0)–No||<δ следует 
неравенство ||N(t)–No||<ε при t > t0, где ||…….|| – Евклидова норма; No – 
равновесное состояние нейросетевой системы; N(0), N(t) – состояния 
РНС на моменты времени t0 = 0 и t > t0. Заметим, что для каждого вида 
состояний РНС могут формироваться свои неравенства. Так в качестве 
N(t) может вступать число нейронов М(t), возбужденных в РНС на 
текущий момент времени. По отношению к синапсам РНС N(t) 
представимо значением их суммарных весов )(tWΣ . Таким образом, 
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при равномерно устойчивом функционировании РНС при выполнении 
неравенств ||M(0)–Mo||<δ1, ||W∑(0)–Wo||<δ2 должны выполняться 
условия: ||M(t)–Mo||<ε1 и || )(tWΣ –Wo||<ε2 при t > t0.  

Обеспечение выполнения этих условий применительно к 
потоковым РНС в некоторой мере выполнимо в рамках известных 
методов. Однако они не учитывают специфику этих РНС. В том числе 
известные подходы регуляризации должны учитывать особенности 
функционирования потоковых РНС. 

3. Потоковая РНС как относительно конечный 
операционный автомат. В интересах поиска путей расширения 
возможностей устойчивой интеллектуальной обработки сигналов 
импульсными потоковыми РНС, рассмотрим их обобщенную модель.  

При формализации функционирования потоковой РНС в 
дискретном времени и дискретном пространстве состояний функцию 
переходов ее из одного внутреннего состояния в другое можно 
записать в виде 
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a
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состояние выхода РНС. 
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характеризующие РНС на t-й момент времени, должны удовлетворять 
определенным условиям (3) – (7): 
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)( 1−∈ t
b
t hDBSSP ; (5) 

 
)( 1−∈ t

h
tF hFH ; (6) 

 
)( 1−∈ t

S
tF hFS . (7) 

 
Согласно (3) внутреннее состояние РНС на t-й момент времени 

должно относиться к множеству )( 1−thDH  допустимых внутренних 
состояний для этого момента, определенных относительно t-1. 
Условие (4) показывает, что состояния входа РНС на t-е моменты 
времени, ограничиваются множеством )( 1−thDA . Условие (5) 
отражает ограниченность возможных состояний выходов РНС. Они 
должны принадлежать множеству )( 1−thDB допустимых результатов 
относительно момента времени t-1. По условию (6) функция 
переходов h

tF  РНС на t-й момент должна относиться к множеству 
)( 1−thFH  допустимых функций. Множество )( 1−thFH  функций 

отражает возможные переходы РНС из одного внутреннего состояния 
в другое на t-й момент времени. Согласно условию (7) функция S

tF  
выходов РНС на t-й момент времени должна принадлежать 
множеству )( 1−thFS  допустимых функций относительно t-1 момента.  

Система выражений (1) – (7) представляет собой 
математическую модель РНС. В данном случае РНС формализуется в 
виде относительно конечного операционного перестраиваемого 
автомата. Все параметры такого автомата в общем случае конечны 
только на интервале одного шага работы. Они переопределяются 
относительно предыдущего шага.  

С учетом этого РНС на каждый t-й момент времени можно 
формализовать автоматом ARNNt c восьмью параметрами, 

 

{ }h S
t t t t t 1 t 1 t 1 t 1 t 1ARNN , F ,F , ( ), ( ), ( ), ( ), ( ) .− − − − −= h DA h DH h DB h FH h FS h  (8) 
 
Переход РНС в виде автомата tARNN  к 1+tARNN  можно 

записать в виде 
 

1,: +→ t
a
tt

h
t ARNNARNNF SSP . (9) 
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Этот автомат, формализующий потоковую импульсную РНС, 
является перестраиваемой системой. 

Устойчивость функционирования РНС согласно (1) – (9) во 
многом определяется ограничениями на внутренние ее состояния и 
состояния входов. При этом условие (3) представимо в виде 
ограничений на состояния нейронов и синапсов сети. Также условие 
(4) может предусматривать отдельные временные и пространственные 
ограничения на СЕИ, поступающие на различные входы РНС. 
Зависимость DH, DA, DB, FH, FS от ht-1 в (3) – (7) применительно к 
импульсной потоковой РНС можно объяснить следующими 
положениями. Каждый нейроны этой РНС после возбуждения 
переходит в состояние рефрактерности (временной 
невосприимчивости). Нахождение ряда нейронов в состояниях 
рефрактерности на момент t-1 влечет изменения допустимых множеств 
DH, DA, DB, FH, FS для момента t.  

Опираясь на эту модель, поясним в следующем разделе 
предлагаемый метод устойчивой интеллектуальной обработки 
сигналов усовершенствованной потоковой РНС.  

4. Метод. Раскроем предлагаемый метод на примере потоковой 
импульсной РНС с линейными схемами продвижения сигналов 
(последовательностей СЕИ) вдоль слоев (рисунок 2). На уровне 
нейросетевых каналов эта РНС представима в виде рисунка 3. 

 

 
 

Рис. 2. Схема потоковой РНС с линейной структурой: 1 – линии разбивки 
слоев на логические поля за счет реализуемых пространственных сдвигов 
СЕИ, передаваемых от слоя к слою; 2, 3 – направления продвижения СЕИ 

вдоль и между слоями; 4 – нейроны. Штрихпунктирными стрелками показаны 
направления рекуррентного ассоциативного вызова СЕИ из памяти в режиме 

генерации сигналов 
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В такой РНС, чем больше длина нейросетевых каналов, тем 
лучше внимание и корректнее вызов сигналов из памяти по 
содержанию обрабатываемой информации. 

В структурном плане эта РНС отличается от известных решений 
дополнительной несимметричностью ассоциативного связывания СЕИ 
в сети и вызова их из памяти. 

 

 
 

Рис. 3. Структура потоковой РНС на уровне нейросетевых каналов: 1 – 
каналы; 2 – рекуррентные ассоциативные взаимодействия обрабатываемых 

сигналов 
 
Помимо реализации в нейросетевых каналах сети генерации 

сигналов (за счет рекуррентного вызова их из памяти), 
предусматривается перекрестный рекуррентный вызов сигналами 
одной модальности сигналов другой модальности. При этом выходы 
РНС смещены относительно входов на одно логическое поле. Отличия 
в части правил функционирования касаются особенностей 
предварительного преобразования входных сигналов и ввода их в сеть, 
механизмов связывания, запоминания и забывания в ней информации, 
аспектов регулирования порогами возбуждения нейронов в сети, 
условий устойчивого непрерывного обучения и генерирования 
сигналов. 

С учетом этого и условий Ляпунова [10] предлагается новый 
метод устойчивой интеллектуальной обработки сигналов в потоковой 
РНС. В обобщенном виде этот метод можно свести к следующим 
положениям: 
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1. Подача сигналов на входы РНС, предварительно 
преобразованных в последовательности совокупностей единичных 
импульсов (СЕИ) по уточненным правилам. При этом СЕИ должны 
удовлетворять требованиям (4). 

2. Передача СЕИ от слоя к слою, с продвижением их вдоль 
слоев по принятым маршрутам без искажений. Этот пункт метода и 
последующие должны реализовываться в рамках условий (1) – (3), (5) 
– (7) со своей спецификой. 

3. Связывание в РНС поступающих совокупностей 
единичных импульсов при продвижении их по сети только с 
последующими СЕИ. 

4. Запоминание результатов этого связывания на элементах 
потоковой РНС. 

5. Изменение порогов возбуждения каждого нейрона в любом 
из логических полей слоев РНС в зависимости от числа уже 
возбужденных в этом поле нейронов.  

6. При снижении загрузки РНС входными СЕИ меньше 
допустимого значения генерирование сетью последовательностей СЕИ 
посредством ассоциативного рекуррентного вызова их из памяти сети.  

7. При возрастании загрузки РНС входными СЕИ снижение и 
прекращение генерирования сетью связанных сигналов. Потенциально 
управление загрузкой РНС входными сигналами может 
осуществляться в зависимости от содержания обрабатываемой в сети 
информации. 

Поясним эти положения метода. В качестве исходных сигналов 
для обработки в РНС могут выступать различные воздействия 
(акустические, электрические, радио, оптические, химические и другие 
сигналы). Перед подачей в РНС они должны раскладываться, в общем 
случае, на пространственно-частотные или пространственно-
химические составляющие. Каждая составляющая должна 
преобразовываться в последовательность единичных импульсов с 
частотой и фазой следования, как функциями от амплитуды и фазы 
составляющей. В частности, исходный сигнал s(t) можно разложить в 
гармонический ряд Фурье (10): 

 

∑∑
∞

=

∞

=

ϕ+==
00

)cos()()(
n

nn
n

n nwtAtsts , (10) 

 
где nA  – амплитуда гармоник; nw  – частота гармоник, Тw /2π= ; 

nϕ  – фаза гармоник; Т- период. 
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Каждую гармоническую составляющую этого ряда можно 
преобразовать в последовательность единичных импульсов с частотой 
следования nF , как функцией от амплитуды nA , и с задержкой nτ , 
однозначно связанной с фазой nϕ : 

 
)/2/(1 2

0 rpnn ARWF τ+τ+= , (11) 
 

nwARW nnn //2 2
0 ϕ+=τ . (12) 

 
В (11), (12) приняты обозначения: 0W  – пороговая энергия, при 

которой происходит возбуждение первичных модельных нейронов в 
датчиках; R – входное сопротивление; pτ  – длительность 

формируемых единичных импульсов; rτ  – время рефрактерности, 
невосприимчивости нейронов после возбуждения. При этом заметим, 
что номер n каждой составляющей исходного сигнала должен 
совпадать с номером нейрона во входном поле РНС, а число таких 
последовательностей должно быть ограничено допустимыми 
пределами. 

Для преобразования результатов обработки 
последовательностей единичных импульсов в соответствующие им 
исходные сигналы можно реализовать обратную процедуру. В 
интересах этого требуется определить частоту *

nF  следования 

единичных импульсов и их относительные задержки *
_ znτ . Для 

определения *
nF  достаточно знать число импульсов, попадающих в 

предварительно заданный временной интервал [24]. Для установления 
значений *

_ znτ  можно измерять относительные задержки единичных 

импульсов в их последовательностях. Параметры RW ,0 , rp ττ , , 

nw считаются известными. С учетом этого амплитуды *
nA  и фазы *

nϕ  
восстановленных составляющих определяются как (13), (14): 
 

2
1

*
0

* ))/1/(2( rpn FRWA τ−τ−= , (13) 
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nw
A

RW
znn ⋅−τ=ϕ )

)(
2( 2*

0*
_

* . (14) 

 
Таким образом, все параметры исходного сигнала )(* ts  

определены, и он может быть успешно восстановлен с применением 
современных методов цифрового синтеза. Возможны и другие 
преобразования [24]. 

В дискретном времени формируемые на входе РНС 
последовательности единичных импульсов можно рассматривать как 
последовательные совокупности этих импульсов. Если в качестве 
исходного сигнала выступает один обычный кадр изображения (при 
обработке цифрового видеопотока), он также должен 
преобразовываться в последовательность совокупностей единичных 
импульсов с длительностью, не превышающей период повторения 
этих кадров. В частном случае при векторном представлении входных 
сигналов каждая последовательная совокупность может содержать 
всего один импульс. Например, так можно кодировать 
последовательность слов в предложениях, если пространство 
логических полей в слоях нейронной сети позволяет отражать все 
слова из используемого словаря. 

При этом каждая i+1 СЕИ не должна содержать импульсов из i-
й СЕИ. Кроме этого ввод СЕИ в РНС должен осуществляться с 
периодом, меньше времени рефрактерности нейронов 
(невосприимчивости их после возбуждения). При непрерывном 
обучении это позволяет обеспечить баланс в РНС между 
возбуждающими и тормозящими воздействиями нейронов.  

Передача СЕИ от слоя к слою с продвижением их вдоль слоев 
по принятому маршруту без искажений реализуется за счет 
приоритетности сильных связей в РНС. При передаче СЕИ по сети 
нейроны передающего слоя возбуждают нейроны принимающего слоя, 
который затем становится передающим слоем. Состояние 

)( 1+ri tx каждого нейрона принимающего слоя РНС на момент времени 

1+rt можно выразить как, 
 

i r i r iож i реф

i r 1 iож i реф

1, когда I (t ) ID (t ), t t

x (t ) 1, если t t

0, вдругих случаях

Σ

+

+ ≥ ≥


= − <



, (15) 
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∑
=

⋅=
eJ

j
rjrijri txtwtI

1
)()()(Σ . (16) 

 
В выражениях (15), (16) приняты обозначения: )( ri tIΣ  – 

суммарный ток на входе i-го нейрона на момент rt ; )( rj tx  – состояние 

j-го нейрона передающего слоя РНС на момент времени rt ; )( rij tw  – 
вес (проводимость) синапса, связывающего j-й нейрон с i-м нейроном 
принимающего слоя; eJ  – число возбужденных нейронов 
передающего слоя, по которым осуществляется суммирование весов 
синапсов; )( ri tID  – порог возбуждения i-го нейрона на момент 
времени rt ; ожit  – время ожидания i-го нейрона после последнего 
возбуждения; рефit  – время невосприимчивости i-го нейрона после 

последнего возбуждения. Согласно (15) при нахождении нейрона в 
состоянии возбуждения 1)( 1 =+ri tx , а в состоянии невосприимчивости 

1)( 1 −=+ri tx . В состоянии ожидания 0)( 1 =+ri tx . 
Как и в [3] веса )( rij tw синапсов определяются через 

произведение их весовых коэффициентов )( rij tk  и функций 

ослабления )( rij tµ расходящихся и сходящихся единичных образов 
(17) – (18), 

 
)()()( rijrijrij ttktw µ⋅= , (17) 

 
ij r ij r ij r ij rk (t ) (1 exp( g (t ))) / (1 exp( g (t )) th( g (t ) / 2),g g g= − − ⋅ + − ⋅ = ⋅  (18) 

 
ij r ij r 1 ij r 1g (t ) g (t ) g (t ).− −= ± ∆  (19) 

 
В (18) γ  – постоянный коэффициент; )( rij tg  – на момент rt  

суммарное число единичных импульсов, прошедших через 
соответствующий синапс, с учетом их знака. Значение )( 1−rij tg∆

 
зависит от состояний, взаимодействующих i-го и j-го нейронов. Если 
возбужденный j-й нейрон вызвал возбуждение i-го нейрона, то 
значение )( 1−rij tg∆ положительное. Когда сгенерированный j-м 
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нейроном сигнал воздействует на i-й нейрон в состоянии 
невосприимчивости, то )( 1−rij tg∆  отрицательно. В остальных 

случаях 0)( 1 =−rij tg∆ . Функции ослабления )( rij tµ , за счет изменения 
которых реализуются пространственные сдвиги СЕИ, можно 
определить согласно [3]. 

Для исключения перевозбуждения РНС порог возбуждения 
каждого i-го нейрона в состоянии ожидания согласно (15) 
предлагается определять, исходя из следующих правил. В каждом 
логическом поле сначала возбуждается нейрон с наибольшим 
значением ),( ri tIΣ  преодолевающим порог возбуждения этого 
нейрона в состоянии ожидания, с одновременным увеличением 
порогов возбуждения для других нейронов в этом поле. Затем может 
возбудиться другой нейрон с наибольшим значением суммарного тока 
на входе, если это значение превышает повышенный порог и так далее. 
Пороги возбуждения у оставшихся нейронов в состоянии ожидания 
возвращаются к исходному состоянию к моменту 1+rt .  

Согласно предлагаемому методу увеличение числа 
возбуждающих воздействий на нейроны приводит к увеличению числа 
тормозящих воздействий, а возрастание числа последних влечет 
снижение числа первых. При таких условиях всегда можно добиться, 
чтобы суммарное число возбужденных нейронов в каждом слое РНС 
не превышало заданного значения задB . 

 

задr

JI

ji
ji Btx <∑

=

)(
)(

1)(
)( , (20) 

 
Также когда соблюдаются начальные условия на момент 

времени ot  с учетом (17) – (19), (20) и правил ввода СЕИ в РНС 
применительно к суммарному весу синапсов справедливо условие (21): 

 

2

2

1 1 1
0)( ε<−∑∑∑

= = =s

I

i

J

j
rij

s Wtw , при or tt > , (21) 

 
Согласно этому условию суммарный вес синапсов двухслойной 

РНС как при обучении, так и при генерации сигналов будет 
находиться в пределах некоторой «трубки».  
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В соответствии с методом, когда загрузка РНС входными 
сигналами больше допустимого значения, генерирование сетью 
последовательностей СЕИ посредством ассоциативного рекуррентного 
вызова их из памяти сети невозможно. Входные сигналы, продвигаясь 
по сети по сильным связям, подавляют возможные ассоциативные 
вызовы СЕИ из памяти. При этих условиях РНС функционирует 
только в режиме непрерывного обучения. При снижении загрузки РНС 
входными сигналами ниже допустимого значения осуществимо 
генерирования сетью связанных сигналов посредством вызова их из 
памяти. 

5. Особенности решения интеллектуальных задач 
предлагаемым методом. В отличие от [3, 25] в предлагаемом методе 
исключается ассоциативный вызов СЕИ из памяти РНС в направлении 
продвижения сигналов по сети. Однако сохраняется рекуррентный 
вызов. Это приводит к тому, что вся интеллектуальная обработка 
сигналов базируется на решении задач прямого анализа. К таким 
задачам относится последовательный вызов из памяти сигналов на 
основе ранее воспринятых, прогнозирование и распознавание событий, 
перевод речи, оценивание эффективности реализуемых процессов и 
другие. Формально эти задачи на уровне нейросетевой обработки 
совокупностей единичных импульсов, обозначенных, как и в (1), (2), в 
виде SSP, сводятся к схеме (22): 
 

{ } 112 ,,,..., +−−− → ttttkt SSPSSPSSPSSPSSP  при .,1 Tt =  (22) 
 

Согласно этой схеме ищется 1+tSSP  на момент времени t+1, 
исходя из ранее введенных в РНС совокупностей 
{ }tttkt SSPSSPSSPSSP ,,,..., 12 −−− и содержания ее памяти. 

Решение обратных задач возможно по этой же схеме, но при 
обучении РНС потоками сигналов в обратном порядке (23): 

 
{ } )1(21 ,...,,, +−−−− → ktktttt SSPSSPSSPSSPSSP  при .,1 Tt =  (23) 

 
Также обратные задачи могут сводиться к поиску более ранних 

сигналов, относительно которых можно прийти к известному 
результату SSPзад. В этом случае схема обработки предусматривает 
многократное решение задач обычного прямого анализа (24):  
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{ }

{ }

1 1 1 1 1
t k t 2 t 1 t t 1

f f f f f
t k t 2 t 1 t t 1

,..., , ,

....................................................................

,..., , ,

..................................................

− − − +

− − − +

→

→

SSP SSP SSP SSP SSP

SSP SSP SSP SSP SSP

{ }D D D D D
t k t 2 t 1 t t 1

,

..................

,..., , ,− − − +








 → SSP SSP SSP SSP SSP

 (24) 

 
при t от 1 до T, и определение одной или несколько совокупностей 
единичных импульсов, например, из последовательности 

 
{ },,,),..., 12

f
t

f
t

f
t

f
kt SSPSSPSSPSSP −−−  

 
при условии (25): 
 

.1 зад
f

t SSPSSP ≅+  (25) 
 

К обратным задачам относятся, прежде всего, задачи 
обоснования требований к процессам и системам, определение 
первопричин наступления событий и другие.  

При решении задач синтеза согласно предлагаемому методу 
считаются известными одна зад_0SSP  или несколько начальных СЕИ, 

а также одна заде _SSP  или несколько конечных СЕИ. Требуется найти 

последовательность СЕИ, позволяющую перейти от зад_0SSP  к 

задe _SSP  при удовлетворении ряду условий. В качестве таких 
условий могут выступать ограничения на число шагов, на время 
перехода и другие. Схему решения задач синтеза можно представить 
также в виде многократной реализации задач анализа (24), но при 
условиях, например, когда 

 

зад
f

kt _0SSPSSP =−  и задe
f

t _1 SSPSSP =+ , 

 
{ } допz

f
t

f
t

f
t

f
t

f
ktz WW _112 ),,,,...,( ∈+−−− SSPSSPSSPSSPSSP , Zz ,1= . (26) 
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В (26) (.)zW  – z-е показатели, которые должны относиться к 
областям допустимых значений допzW _ . Результатом решения этой 
задачи выступает последовательность СЕИ: 
 

{ }задe
f

t
f

t
f

t
f

tзад
f

kt _112_0 ,,,,..., SSPSSPSSPSSPSSPSSPSSP == +−−− . 

 
Учитывая эти особенности, можно утверждать, что все виды 

задач могут решаться на основе прямой задачи анализа, лежащей в 
основе принципов работы усовершенствованной потоковой РНС. При 
этом все умение взаимодействовать с интеллектуальной системой на 
основе этой РНС, чтобы получить интересующий результат, может 
сводиться к правильному воздействию на нее. Некоторые примеры 
решения задач согласно подобным схемам приведены в [25]. 

Заметим, что в предлагаемом методе не предусматривается 
управление физическим временем работы РНС. Для предсказания 
будущих событий и обращение к прошлому времени обучение РНС 
должно осуществляться со связыванием основных сигналов со 
свойствами времени их проявления. В дальнейшем это позволяет 
обращаться к свойствам времени и вызывать из памяти РНС связанные 
с ними сигналы. Для управления модельным временем можно 
изменять масштаб вызываемых из памяти РНС сигналов.  

В частном случае, усовершенствованная РНС применима и в 
системах управления физическим временем. В этом случае 
необходимо использовать две идентичные усовершенствованные РНС. 
Первая РНС должна функционировать только в режиме непрерывного 
обучения, воспринимать и запоминать последовательности СЕИ. На 
второй РНС на основе периодического считывания информации о 
состоянии первой РНС могут решаться прикладные задачи. Так при 
решении задачи прогнозирования согласно схеме (22) выполняются 
следующие действия. С первой РНС считываются во вторую РНС 
текущие состояния нейронов, несущие информацию о введенной в 
первую сеть последовательности СЕИ (левая часть формулы (22)). 
Также во вторую РНС считываются данные о текущих значениях весов 
синапсов первой сети. Затем вторая РНС начинает функционировать в 
ускоренном времени и вызывать из памяти результаты 
прогнозирования (правая часть формулы (22)) без прерывания работы 
первой РНС.  

Однако заметим, что решение интеллектуальных задач 
потоковой рекуррентной нейронной сетью, реализуемой программным 
путем, требует существенных вычислительных ресурсов. Так 
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пространство только самих нейронов в РНС J⋅23  вариантов, где J - 
число нейронов в каждом слое, а пространство весов синапсов - 

22 JK ⋅ . При этом число возможных состояний K одного взятого 
синапса зависит от значения ijg∆ и может исчисляться десятками. При 
числе нейронов в РНС J=1000, для кодирования возможных состояний 
сети требуется около 6,5 Мб, а при J= 610  уже около 6500 Мб. К этому 
добавим, что непрерывное обучение РНС, в том числе при генерации 
новых сигналов, предусматривает перевод сети из одних состояний в 
другие, что кратно увеличивает сложность программного 
моделирования. Перспективным путем выступает аппаратная 
реализация РНС на аналоговых нейроморфных процессорах с 
мемристивной памятью. При этом появляется возможность 
использования в РНС нейронов с внутренней памятью и 
дополнительной обработкой сигналов на их входах [25]. Это позволяет 
существенно расширить память РНС и повысить избирательность 
обращения к ней по содержанию обрабатываемых сигналов. 

Несомненно, в частном случае отказавшись от непрерывного 
обучения, можно существенно снизить вычислительную сложность 
моделирования нейросетевой обработки сигналов. Однако это не 
позволяет обеспечить высокие возможности РНС по обработке 
сигналов и событий с изменяющимися законами поведения. Во всех 
случаях необходимо обеспечивать устойчивое функционирование 
РНС. 

6. Результаты моделирования. В интересах подтверждения 
работоспособности предложенного метода проводилось 
моделирование. На входы потоковой РНС подавались 
последовательности СЕИ, состоящие из 2, 3, 4 и 7 и 15 единичных 
импульсов, несущих информацию о закодированных сигналах. При 
этом каждая последующая i+1 СЕИ не содержала импульсов из i-й 
СЕИ. Ввод СЕИ в РНС осуществляться с периодом, меньше времени 
невосприимчивости нейронов после возбуждения. Длительность таких 
последовательностей составляла 1500 СЕИ. В качестве базовой 
потоковой импульсной РНС выступала сеть с числом нейронов в 
каждом слое 630 единиц. Слои сети за счет реализуемых 
пространственных сдвигов СЕИ, передаваемых от слоя к слою, 
разбивались на логические поля размером 6×7 нейронов. 
Обрабатываемые СЕИ посредством этих сдвигов продвигались вдоль 
слоев по линейной схеме, как на рисунках 1, 2. Связывание в РНС 
поступающих совокупностей единичных импульсов при продвижении 
их по сети осуществлялось только с последующими СЕИ. Нейроны 
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одного и того же слоя связей друг с другом не имели и 
функционировали согласно (15) – (19).  

Моделирование не ограничивалось одной РНС с числом 
нейронов в слоях 630 единиц и размерами полей 6×7. Базовая модель 
позволяла моделировать РНС с разным количеством логических полей 
(размерами 6×7) в слоях. В частности, исследовались также РНС с 
числом нейронов в слоях 840 и 1050 единиц. Получаемые результаты 
принципиально не отличались, только с увеличением числа нейронов в 
слоях существенно возрастало время моделирования. Обрабатывались 
не только фиксированные, но и случайно генерируемые 
последовательности СЕИ.  

Анализировались текущая загрузка РНС единичными 
импульсами, текущий суммарный вес синапсов сети, а также 
возможности ассоциативного рекуррентного вызова сигналов из ее 
памяти. На рисунке 4(а, б) показано, как изменяется загрузка базовой 
РНС (с числом нейронов в каждом слое 630 единиц) единичными 
импульсами в режиме непрерывного обучения при обработке 
последовательности длиной 1500 СЕИ c временем рефрактерности 
нейронов сети, равным одному шагу ее работы.  

При восприятии последовательности СЕИ, состоящих на 
интервалах 0 – 250, 251 – 500 и 501 – 1500, соответственно, из двух, 
четырех и трех импульсов, график этой загрузки отражен на 
рисунке 4(а). Для последовательности СЕИ, с числом импульсов 3, 15, 
7 импульсов, соответственно на интервалах 0 – 250, 251 – 500 и 501 – 
1500 график загрузки другой (рисунок 4(б)).  

Согласно рисунку 4(б) первый и второй всплески, обусловлены 
оперативным заполнением РНС соответствующими СЕИ до моментов 
начала покидания ими сети. В установившихся режимах в первом 
случае число импульсов в РНС колеблется около отметки 70 единиц, а 
во втором случае – около 240 единиц. После подачи в РНС СЕИ с 
числом импульсов, равным 7, вместо 15, колебания происходят около 
отметки 150 единиц.  

Из анализа рисунка 4 и других аналогичных экспериментов 
сделан вывод, что на интервале длиной 1500 последовательных СЕИ 
загрузка РНС изменяется в пределах некоторой «трубки», что 
удовлетворяет критериям Ляпунова для равномерной устойчивости. 
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а) 

 
б) 

Рис. 4. Примеры загрузки )/( sspTtN РНС единичными импульсами в режиме 

непрерывного обучения при обработке последовательности СЕИ с суммарной 
длиной 1500 совокупностей: sspT  – период повторения СЕИ, равный одному 

шагу работы сети (десятые доли секунды); t – текущее время, кратное sspT  
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Установлено, что суммарный вес )/( sspTtWΣ  синапсов 
(рисунок 5(а, б)), являясь положительным по значению, с увеличением 
длины последовательности обрабатываемых СЕИ стремится к 
некоторой точке равновесия. Такое стремление удовлетворяет 
требованиям устойчивости, в части отрицательного приращения по 
времени функции Ляпунова для дискретного времени. 

Рисунок 5(а) соответствует изменению суммарного веса 
синапсов для загрузки РНС согласно рисунку 4(б). При загрузке РНС 
последовательностями СЕИ, состоящими только из трех импульсов, 
имеем рисунок 5(б). Такие зависимости можно объяснить тем, что 
число введенных в сеть единичных импульсов, содержащихся в 
нечетных СЕИ, стремится к числу этих импульсов в четных СЕИ. В 
следствие этого число положительных взаимодействий сигналов в 
РНС стремится к числу отрицательных их ассоциаций. 

 

 
а) 

 
б) 

Рис. 5. Изменение суммарного веса )/( sspTtWΣ  синапсов при обработке 

последовательности длиной 1500 СЕИ 

1669

____________________________________________________________________

Informatics and Automation. 2025. Vol. 24 No. 6. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



Заметим, что начальная точка суммарного веса синапсов равна 
1260 – числу сильных связей в сети с весами, равными единице. Для 
рассмотренного примера на рисунке 5(б) число положительных 
ассоциаций между обрабатываемыми импульсами при длине 
последовательности 1500 СЕИ составило 4212295 единиц, а 
отрицательных – 4362269 единиц. Отклонения их друг от друга лежат 
в пределах 3,5%. 

Если допустить, что )/( sspTtWΣ  и sspTt /  являются 
непрерывными величинами, то графики на рисунке 5 можно 
аппроксимировать функцией (27), 

 
*

0W (x) W W(1 exp( x)),λΣ = − ∆ − − ⋅  (27) 
 
где W0 – значение суммарных весов синапсов на начальный момент; 
∆W – предельный спад значений этих весов; λ – интенсивность спада 
суммарных значений весов. Эту функцию можно отнести к функции 
Ляпунова. Производная от нее по x, как функции времени, имеет 
отрицательное значение и при x →∞ стремится к нулю (28), 
 

.0)exp()(*
≤⋅λ−⋅λ⋅−= xW

dx
xdW

∆Σ  (28) 

 
Значения ∆W и λ в (27), (28) можно определить с применением 

метода наименьших квадратов [26]. 
Один из вариантов распределения значений (19) положительных 

и отрицательных рекуррентных ассоциаций сигналов через синапсы 
между двумя логическими полями (размером 42=6×7 нейронов) 
разных слоев РНС показан на рисунке 6. Вертикальная и 
горизонтальная оси на рисунке 6 соответствуют номерам нейронов, 
взаимодействующих двух полей разных слоев РНС. Цветными 
пикселями обозначены синапсы, через которые реализуются 
ассоциации между нейронами. Цвет каждого синапса отражает 
суммарное число единичных импульсов прошедших через него с 
учетом их знака. Справа на рисунке 6 цветовая шкала значений.  

Из анализа рисунка 6 видно, что такое распределение носит 
относительно равномерный характер в части положительных и 
отрицательных взаимодействий сигналов. Это свидетельствует о том, 
что в явном виде катастрофическое забывание ранее запомненных 
сигналов в анализируемой РНС отсутствует.  
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Рис. 6. Распределение значений положительных и отрицательных 

рекуррентных ассоциаций сигналов между двумя логическими полями 
нейронов в РНС 

 
Пример состояния первого слоя РНС при непрерывном 

обучении приведен на рисунке 7. Согласно рисунку 7 вводимые в сеть 
СЕИ, содержащие по три импульса, продвигаются вдоль слоев справа 
налево и ассоциируются. При этом исключается ассоциативный вызов 
из нейросетевой памяти ранее запомненных сигналов. 
 

 
Рис. 7. Пример состояния первого слоя РНС при непрерывном обучении 
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Вертикальная ось на рисунке 7 соответствует номерам нейронов 
в столбцах слоя сети, а горизонтальная ось – числу таких столбцов. 
Жирными линиями отражены возбужденные нейроны на 
рассматриваемый момент времени. 

Подтверждено, что после непрерывного обучения, например, 
последовательностями СЕИ, состоящими только из одиночных 
импульсов, при снижении загрузки РНС входными сигналами сеть 
способна устойчиво генерировать СЕИ, ассоциативно вызывая их из 
памяти. Примеры такой генерации приведены на рисунке 8.  
 

 
а) 
 

 
б) 

1672

____________________________________________________________________

Информатика и автоматизация. 2025. Том 24 № 6. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ



 
в) 
 

 
г) 

Рис. 8. Примеры состояний первого слоя РНС при рекуррентном вызове 
сигналов из памяти с непрерывным запоминанием результатов с 

продвижением СЕИ вдоль слоев справа налево. Состояния  
на рисунке 8 (а, б, в, г) расположены в порядке очередности 

 
Схемы ассоциативного рекуррентного вызова сигналов из 

памяти РНС на рисунке 8 показаны штрихпунктирными линиями. 
Согласно рисунку 8 более ранние сигналы вызывают из памяти 
следующие за ними СЕИ. Затем они продвигаются по сети без 
искажений. После прохождения по сети СЕИ покидают ее, но 
оставляют «след» о своем присутствии. Рисунок 8(б) отличается от 
рисунка 8(а) тем, что все сигналы сдвинуты влево с генерацией нового 
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сигнала справа. Аналогичная ситуация с рисунком 8(в, г), только при 
большем числе сдвигов и вызовах из памяти новых сигналов в виде 
единичных импульсов.  

Эксперименты с РНС, содержащими в каждом слое по 840 и 
1050 нейронов показали, что получаемые результаты принципиально 
не отличаются от рисунков 4 – 8. В частности, по отношению к 
рисункам 7, 8 особенности состояли в большем числе 
последовательных СЕИ, одновременно обрабатываемых в РНС. С 
увеличением числа одновременно обрабатываемых в сети СЕИ, 
повышался уровень внимания РНС при рекуррентном вызове сигналов 
из ассоциативной памяти. 

Сравнительная характеристика трех потоковых РНС с числом 
нейронов в идентичных слоях 630, 840 и 1050 единиц при обработке 
последовательностей сигналов длиной 1500 СЕИ отражена в 
таблице 1. В числителях приведены значения )/( sspTtN загрузки РНС 
единичными импульсами в установившихся режимах, при обработке 
одинаковых по длине последовательностей СЕИ, но различных по 
объему самих СЕИ. В знаменателях отражены значения sspT  – 
длительности шагов обработки СЕИ в РНС, равных 1/2 периода их 
поступления в секундах. Время рефрактерности нейронов РНС в этом 
случае, в отличие от примеров на рисунке 4, составляло двум шагам 
работы сети.  

Из анализа таблицы видно с увеличением числа нейронов в 
каждом слое РНС с 630 единиц до 1050 единиц текущая загрузка сети 
при обработке последовательности СЕИ (по четыре импульса) 
возрастает от 48 до 83 импульсов. При этом время sspT увеличивается в 
2,8 раза. С позиции BIBO устойчивости согласно таблице 1 во всех 
экспериментах при ограниченных входных воздействиях на потоковые 
РНС были полученные ограниченные состояния сетей. 

Установлено, что важную роль в обеспечении устойчивой 
обработки СЕИ потоковыми РНС с непрерывным обучением играет 
соблюдение следующего условия. Сигналы должны подаваться в сеть 
с периодом меньше времени невосприимчивости нейронов после 
возбуждения. Последовательности таких совокупностей единичных 
импульсов могут нести всю информацию о различных физических и 
других сигналах. 
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Таблица 1. Сравнительная характеристика потоковых РНС по значениям 
загрузки в установившихся режимах и времени обработки СЕИ 

№ 
п/п 

Число 
нейронов 
в каждом 
слое РНС 

Число единичных импульсов в каждой СЕИ входной 
последовательности 

2 3 4 7 

1 630 
27 

──── 
0,388 

38 
──── 
0,412 

48 
──── 
0,424 

79 
──── 
0,452 

2 840 
35 

──── 
0,696 

52 
──── 
0,732 

65 
──── 
0,760 

100 
──── 
0,800 

3 1050 
45 

──── 
1,096 

63 
──── 
1,156 

83 
──── 
1,192 

122 
──── 
1,292 

 
Также для устойчивой генерации СЕИ требуется обеспечивать 

несимметричность ассоциативного вызова сигналов из памяти и 
изменение порогов возбуждения нейронов в логических полях в 
зависимости от их текущей загрузки.  

При несоблюдении этих условий, суммарные значения весов 
синапсов могут стремиться к своему пределу с катастрофически 
забыванием информации с последующим перевозбуждением РНС. 

В практическим плане, потоковые РНС, содержащие от 
нескольких сотен до нескольких тысяч нейронов в слоях, могут 
реализовываться программным путем. РНС с этими характеристиками 
применимы для решения ряда задач нейросетевого прогнозирования и 
нейроуправления трудно формализуемыми процессами с 
непрерывным обучением. При этом пространство состояний этих 
процессов на дискретные моменты времени должно быть соизмеримо 
с пространством входных полей РНС.  

В частности, с применением потоковых РНС проводились 
исследования по оценке точности решения задач прогнозирования 
скорости потоков транспортных средств на восьми улицах Санкт-
Петербурга согласно схеме (22). В интересах этого формировались 
временные ряды со значениями этих скоростей с интервалами в три 
часа. Значения скоростей перед вводом в РНС кодировались в виде 
конкретных СЕИ. Результаты оценивались по показателям средней 
абсолютной ошибки (MAE – mean absolute error), средней абсолютной 
процентной ошибки (MAPE – mean absolute percentage error) и 
среднеквадратической ошибки (RMSE – root mean square error). 
Полученные оценки сравнивались с аналогичными показателями, 
полученными при применении известных методов [14, 27, 28]: долгой 
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краткосрочной памяти (LSTM – long short – term memory) и 
интегрированной модели авторегрессии – скользящего среднего 
(ARIMA – autoregressive integrated average). Установлено, что 
применение потоковых РНС по сравнению с LSTM позволяет снизить 
MAE на 21,8%, MAPE на 9,6%, RMSE на 15,3%. По отношению к 
ARIMA выигрыш потоковых РНС составил по MAE – 21,0%, MAPE – 
21,3%, RMSE – 11,0%.  

7. Заключение. Следуя принципам научной школы члена-
корреспондента РАН Р.М. Юсупова, проведен анализ возможных 
решений по обеспечению устойчивой интеллектуальной обработки 
сигналов потоковыми импульсными РНС с непрерывным обучением. 
К наиболее перспективным подходам по обеспечению этой 
устойчивости отнесены использование неперекрывающихся 
и ортогональных представлений обрабатываемых в РНС сигналов, 
а также другие методы на основе регуляризации. 

Поставлена и решена задача разработки новых методов 
устойчивой интеллектуальной обработки сигналов потоковыми РНС с 
непрерывным обучением. В интересах ее решения РНС формализована 
относительно конечным операционным автоматом. Предложен новый 
метод устойчивой интеллектуальной нейросетевой обработки сигналов 
с непрерывным обучением и реализующая его усовершенствованная 
потоковая импульсная РНС. К основным особенностям предложенного 
метода относятся новые правила предобработки и введения сигналов в 
сеть, условия запоминания и генерации последовательностей СЕИ, а 
также схемы решения потоковыми РНС прямых и обратных задач 
анализа и синтеза. Не смотря, что в основе функционирования 
усовершенствованной РНС лежит решение прямой задачи анализа, за 
счет применения специальных схем ввода информации в сеть можно 
решать и другие задачи. Усовершенствования потоковой РНС 
касаются следующих аспектов. Это введение в сеть дополнительной 
несимметричности ассоциативной обработки сигналов. Использованы 
импульсные нейроны с продолжительной рефрактерностью и с 
динамическими порогами возбуждения, зависящими от уровня 
загрузки отдельных логических полей слоев сети. Добавлены правила 
по приоритетности возбуждения нейронов, относящихся к одним и тем 
же логическим полям.  

В отличие от известных методов, лежащих в основе таких 
систем как Chat GPT, Deep Seek и других, реализованных на основе 
нейронных сетей трансформеров, предложенный метод 
предусматривает непрерывное обучение и оперативную адаптацию к 
изменяющимся внешним условиям. Непрерывное устойчивое 
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обучение позволяет обойти ограничения, свойственные Chat GPT, 
Deep Seek и другим языковым моделям. Кроме этого предложенный 
метод с непрерывным обучением, в отличие от известных решений, 
может успешно обрабатывать различные, заранее неизвестные 
сигналы. 

Результаты моделирования показали, что предложенный метод 
и реализующая его усовершенствованная потоковая РНС способны 
устойчиво непрерывно обучаться без явного катастрофического 
забывания ранее воспринятых сигналов и устойчиво генерировать 
последовательности связанных СЕИ. В такой РНС, при выполнении 
условий согласно предложенному методу, обеспечивается баланс 
между положительными и отрицательными ассоциативными 
взаимодействиями сигналов в сети (между запоминанием новой и 
забыванием устаревшей информации). Эта РНС может обрабатывать 
сверхдлинные последовательности СЕИ и не перегружаться. 

Предложенные новые решения могут найти применение при 
создании перспективных интеллектуальных роботов с непрерывным 
обучением и нейропроцессоров нового поколения. В качестве роботов 
могут выступать те, которые должны функционировать в условиях 
высокой неопределенности событий, постоянно изменяющихся 
законах их проявления. Это могут быть беспилотные подводные, 
наземные, воздушные, космические и другие роботы.  
 

Литература 
1. Man N., Osipov V., Zhukova N., Subbotin A., Ignatov D.I. Neural networks for 

intelligent multilevel control of artificial and natural objects based on data fusion: a 
survey. Information Fusion. 2024. vol. 110. 

2. Осипов В.Ю. Устойчивость рекуррентных нейронных сетей с управляемыми 
синапсами. Информационные технологии. 2011. Т. 9. С. 69–73. 

3. Osipov V., Osipova M. Space–time signal binding in recurrent neural networks with 
controlled elements. Neurocomputing. 2018. vol. 308. pp. 194–204. 

4. Parisi G., Kemker R., Part J., Kanan C., Wermter S. Continual lifelong learning with 
neural networks: A review. Neural Networks. 2019. vol. 113. pp. 54–71. 

5. Van de Ven G., Siegelmann H., Tolias A. Brain-inspired replay for continual learning 
with artificial neural networks. Nature communications. 2020. vol. 11. 
DOI: 10.1038/s41467-020-17866-2. 

6. Tercan H., Deibert P., Meisen T. Continual learning of neural networks for quality 
prediction in production using memory aware synapses and weight transfer. Journal of 
Intelligent Manufacturing. 2022. vol. 33. pp. 283–292. 

7. Haykin S. Neural Networks and Learning Machines, third ed., Prentice Hall, New 
York, 2008. 936 p. 

8. Ehret B., Henning C., Cervera M., Meulemans A., Oswald J., Grewe B. Continual 
learning in recurrent neural networks. ICLR 2021 Conference Paper. 2021. 

9. Schmidgall S., Ziaei R., Achterberg J., Kirsch L. Hajiseyedrazi P., Eshraghian J. 
Brain-inspired learning in artificial neural networks: A review. APL Machine 
Learning. 2024. vol. 2.  

1677

____________________________________________________________________

Informatics and Automation. 2025. Vol. 24 No. 6. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



10. Красовский А.А. Справочник по теории автоматического управления. 
М.: Наука. Гл. ред. физ.-мат. Лит, 1987. 712 с. 

11. Rajchakit G., Agarwal P., Ramalingam S. Stability Analysis of Neural Networks. 
Springer, 2021. DOI: /0.1007/978-981-16-6534-9. 

12. Xie K., Zhang C., Lee S., He Y., Liu Y. Delay-dependent Lurie-Postnikov type 
Lyapunov-Krasovskii functionals for stability analysis of discrete-time delayed neural 
networks. Neural Networks. 2024. vol. 173. 

13. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A., Kaiser L., 
Polosukhin I. Attention is all you need. 31st Conference on Neural Information 
Processing Systems (NIPS 2017). 2017. pp. 6000–6010. 

14. Osipov V. Nikiforov V., Zhukova N., Miloserdov D. Urban traffic flows forecasting 
by recurrent neural networks with spiral structures of layers. Neural Computing and 
Applications. 2020. vol. 32(18). pp. 14885–14897. 

15. Kirkpatrick J., Pascanu R., Rabinowitz N., Veness J., Desjardins G., Rusu A., Milan 
K., Quan J., Ramalho T., Grabska-Barwinska A., Hassabis D., Clopath C., Kumaran 
D., Hadsell R. Overcoming catastrophic forgetting in neural networks. arXiv preprint. 
arXiv 1612.00796v2. 2017.  

16. Zenke F., Poole B., Ganguli S. Continual learning through synaptic intelligence. arXiv 
preprint. arXiv 1703.04200v3. 2017.  

17. Coop R., Arel I. Mitigation of catastrophic forgetting in recurrent neural networks 
using a fixed expansion layer. The 2013 International Joint Conference on Neural 
Networks (IJCNN). 2013. pp. 1–7. DOI: 10.1109/IJCNN.2013.6707047.  

18. Duncker L., Driscoll L., Shenoy K., Sahani M., Sussillo D. Organizing recurrent 
network dynamics by task-computation to enable continual learning. Advances in 
Neural Information Processing Systems 33 (NeurlPS 2020). 2020. vol. 33. pp. 14387–
14397.  

19. Cossu A., Carta A., Lomonaco V., Bacciu D. Continual learning for recurrent neural 
networks: An empirical evaluation. Neural Networks. 2021. vol. 143. pp. 607–627. 
DOI: 10.1016/j.neunet.2021.07.021.  

20. Shi M., Li L., Cao J., Hua L., Abdel-Aty M. Stability analysis of inertial delayed 
neural network with delayed impulses via dynamic event-triggered impulsive control. 
Neurocomputing. 2025. vol. 626. DOI: 10.1016/j.neucom.2025.129573.  

21. He Z., Li C., Wu H., Nie L., Yu Z.. Exponential stability of continuous-time and 
discrete-time neural networks with saturated impulses. Neurocomputing. 2025. 
vol. 623. DOI: 10.1016/j.neucom.2025.129400.  

22. Wang W., Zeng W., Chen W. New sufficient conditions on the global exponential 
stability of delayed inertial neural networks. Neurocomputing. 2025. vol. 622. 
DOI: 10.1016/j.neucom.2024.12930.  

23. Brogan W.L. Modern control theory. 2nd edition. Englewood Cliffs. NJ: Prentice-
Hall, 1985. 509 p.  

24. Auge D., Hille J., Mueller E., Knoll A. A survey of encoding techniques for signal 
processing in spiking neural networks. Neural Processing Letters. 2021. vol. 53. 
pp. 4693–4710.  

25. Осипов В.Ю. Интеллектуальная нейросетевая машина с функциями мышления. 
Информатика и автоматизация. 2024. Т. 23(4). С. 1077–1109.  

26. Линник Ю.В. Метод наименьших квадратов и основы математико-
статистической теории обработки наблюдений. 2-е изд. М., 1962. 336 с.  

27. Айвазян С.А. Прикладная статистика. Основы эконометрики. Том 2. М.: Юнити-
Дана, 2001. 432 с.  

28. Yang B, Sun S, Li J, Lin X, Tian Y. Traffic flow prediction using LSTM with feature 
enhancement. Neurocomputing. 2019. vol. 332. pp. 320–327. 
DOI: 10.1016/j.neucom.2018.12.016. 

1678

____________________________________________________________________

Информатика и автоматизация. 2025. Том 24 № 6. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ



Осипов Василий Юрьевич — д-р техн. наук, профессор, директор, Санкт-
Петербургский институт информатики и автоматизации Российской академии наук, 
Федеральное государственное бюджетное учреждение науки «Санкт-Петербургский 
Федеральный исследовательский центр Российской академии наук» (СПб ФИЦ РАН). 
Область научных интересов: математическое моделирование, интеллектуальные 
системы, нейронные сети, информационная безопасность. Число научных публикаций 
— 170. osipov_vasiliy@mail.ru; 14-я линия В.О., 39, 199178, Санкт-Петербург, Россия; 
р.т.: +7(812)508-3311(1221). 

1679

____________________________________________________________________

Informatics and Automation. 2025. Vol. 24 No. 6. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



 

 DOI 10.15622/ia.24.6.5 
 

V. OSIPOV 
STABILITY OF INTELLIGENT SIGNAL PROCESSING 

BY STREAMING RECURRENT NEURAL NETWORKS WITH 
CONTINUOUS LEARNING 

 
Osipov V. Stability of Intelligent Signal Processing by Streaming Recurrent Neural 
Networks with Continuous Learning. 

Abstract. Intelligent neural network processing of various signals with continuous 
learning is of great scientific and practical interest. For such processing, along with other 
solutions, streaming pulse recurrent neural networks (RNNs) with advanced functionality are 
used. However, for these RNNs, the issues of ensuring their stable operation have not been 
studied in many respects. The goal is to increase the stability of streaming pulse RNNs by 
developing new methods of intelligent signal processing with continuous learning. For this 
purpose, the capabilities of these RNNs are clarified and approaches to ensuring their stability 
during training and signal generation are analyzed. The streaming RNN is formalized as a 
relatively finite operational automaton. A new method for stable intelligent signal processing 
by an improved RNN with continuous learning is proposed. Schemes for solving various 
intelligent problems of analysis and synthesis by the proposed method are considered. The 
modeling results are presented, confirming the operability of the proposed method and the 
possibility of increasing the stability of RNNs during continuous training and signal 
generation. The achievability of a stable balance between memorized and gradually forgotten 
information in the RNN with prompt adaptation to changing external conditions is shown. 

Keywords: neural network, intelligence, stability, continuous learning, signal generation. 
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