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Abstract. The rapid advancement of technology has a profound impact on logistics and
freight transportation. Efficient management of transportation schedules is vital for businesses
seeking to minimize costs, reduce delivery delays, and improve customer satisfaction. One of
the most important challenges in this field is the Vehicle Routing Problem with Time Windows
(VRPTW), which requires not only finding optimal delivery routes but also adhering to specific
timing constraints for each customer or delivery point. Traditional optimization methods often
struggle with the complexity and dynamic nature of real-world logistics, particularly when dealing
with large-scale datasets and unpredictable factors such as traffic congestion or weather conditions.
To address these limitations, this study introduces a machine learning-based system that enhances
the performance of existing VRPTW solutions. Unlike conventional approaches that rely solely
on heuristics or static planning, our system employs modern machine learning models to predict
key time-related parameters — including transit time, availability time, and service time — based
on historical and contextual data. These predictive capabilities allow the routing algorithms to
make more informed decisions, resulting in more accurate and adaptable scheduling. Building
on previous research involving Random Forest models, we propose a more robust framework
that incorporates advanced preprocessing techniques and feature engineering to improve model
accuracy. By training and evaluating the system using real-world datasets, we are able to simulate
practical scenarios and validate the effectiveness of our approach. Experimental results show that
our proposed method consistently outperforms other commonly used machine learning models in
terms of Mean Absolute Error (MAE), thus confirming its potential for real-world applications.
Overall, this study contributes a scalable and intelligent solution to a longstanding logistics
problem, paving the way for more responsive and cost-effective transportation systems.

Keywords: Vehicle Routing Problem with Time Windows (VRPTW), machine learning
models, logistics optimization, transit time prediction, random forest improvement, data
processing techniques.

1. Introduction. The transportation industry plays a pivotal role in the
global supply chain, especially as the volume of freight movement continues to
surge in response to rising consumer demand and evolving market expectations.
With the rapid growth of e-commerce, same-day delivery services, and global
trade expansion, transportation systems are under increasing pressure to operate
with high levels of precision and reliability. This intensifying demand places a
significant burden on logistics providers, who must now balance efficiency, cost-
effectiveness, and punctuality while navigating various real-world constraints
such as traffic congestion, driver availability, and unpredictable weather
conditions. As a result, transportation companies are continuously seeking
innovative solutions to maintain their competitive edge in a highly dynamic
and time-sensitive environment.
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Among the most pressing challenges is the ability to meet strict delivery
time requirements — a factor that directly impacts customer satisfaction and
loyalty. Inaccurate delivery estimates can lead to missed time windows,
increased operational costs, and reputational damage. To address these
concerns, predictive analytics and optimization techniques have become
essential tools. Specifically, the Vehicle Routing Problem with Time Windows
(VRPTW) has emerged as a critical area of focus within logistics and
operations research. VRPTW involves not only determining the most
efficient delivery routes but also ensuring that deliveries occur within
specified time frames for each customer. Solving this problem effectively
requires sophisticated algorithms and predictive models capable of handling
complex constraints. Consequently, researchers and industry professionals
are increasingly leveraging machine learning and data-driven approaches to
improve the accuracy of delivery time predictions, optimize routing strategies,
and ultimately enhance the overall performance of freight transportation
systems [1-4].

The Vehicle Routing Problem with Time Windows (VRPTW) is a
well-defined optimization framework aimed at identifying efficient delivery
routes while adhering to both spatial and temporal constraints [4-6]. The
spatial component of VRPTW involves calculating actual distances between
delivery points using geographic coordinates such as latitude and longitude. In
parallel, the temporal dimension encompasses constraints related to delivery
time windows and customer availability, which must be carefully respected
to maintain service reliability. Effective solutions to VRPTW are critical not
only for minimizing delivery times but also for reducing operational costs,
enhancing fleet and personnel utilization, and satisfying increasingly diverse
customer demands.

Recent advancements in artificial intelligence, particularly in machine
learning, have provided powerful tools to address the complexity of VRPTW.
Deep learning architectures such as Convolutional Neural Networks (CNN),
Long Short-Term Memory networks (LSTM), and Gated Recurrent Units
(GRU) have proven effective in extracting temporal and spatial patterns from
large-scale logistics data [7-9]. Additionally, ensemble-based models like
Random Forest continue to be favored for their robustness and ability to
handle heterogeneous data with high accuracy. These models are increasingly
employed to predict critical time-related parameters — such as transport time,
availability time, and service time — thereby enabling more accurate and
adaptive route planning.

Despite their potential, the success of machine learning deployments
in VRPTW heavily depends on the quality of the training data. Real-world
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logistics data are often noisy, incomplete, or inconsistently structured, which
can hinder model performance if not properly addressed. Therefore, effective
data preprocessing techniques — such as data cleaning, normalization, feature
engineering, and outlier removal — are essential to improve both the reliability
and accuracy of predictive models. Enhancing data quality not only improves
computational outcomes but also strengthens the practical applicability of
intelligent routing systems in dynamic operational environments.

In this study, we place strong emphasis on the role of data preprocessing
as a foundational step toward constructing a high-quality training dataset
that enhances the effectiveness of machine learning models. Recognizing
the limitations of existing approaches, we introduce an improved framework
built upon the Random Forest framework, which leverages the strengths of
ensemble learning to deliver more robust and interpretable results. While deep
learning models such as Convolutional Neural Networks (CNN), Long Short-
Term Memory (LSTM), and Gated Recurrent Unit (GRU) architectures have
shown great promise in various predictive tasks, our framework offers distinct
advantages in terms of computational stability, efficiency, and the ability to
handle high-dimensional and heterogeneous logistics data with minimal tuning.

The experimental evaluation of our framework reveals significant
improvements in the accuracy of delivery time predictions, underscoring both
its predictive power and its applicability in real-world scenarios. Through a
systematic analysis of data preprocessing techniques — such as feature selection,
normalization, and data cleaning — we demonstrate how enhancing dataset
quality contributes directly to better model performance. Furthermore, by
benchmarking our model against standard evaluation metrics and comparing
it to existing machine learning approaches, we provide a comprehensive
perspective on its practical advantages. Ultimately, this study presents a
scalable and reliable solution to the Vehicle Routing Problem with Time
Windows (VRPTW), contributing valuable insights to the ongoing efforts in
logistics optimization within the modern transportation sector.

The remainder of this paper is organized as follows: Section 2 reviews
related work on machine learning and optimization techniques for VRPTW.
Section 3 presents the proposed methodology, including system design, data
preprocessing, and feature construction. Section 4 describes the model training
process and compares the proposed approach with various deep learning
architectures. Section 5 provides a detailed performance evaluation of all
models. Finally, Section 6 concludes the study and discusses future research
directions.

2. Related work. The Vehicle Routing Problem with Time Windows
(VRPTW) has been widely studied due to its practical importance in real-
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world logistics and transportation systems. Traditional approaches to solving
VRPTW mainly rely on exact algorithms (e.g., branch-and-bound, branch-and-
cut) and heuristics or metaheuristics such as Genetic Algorithms, Ant Colony
Optimization, and Tabu Search [10-15]. While these methods are effective
for small or medium-scale instances, they often struggle with scalability and
adaptability in complex, real-time environments.

To address these limitations, recent research has increasingly focused on
leveraging deep learning (DL) and machine learning (ML) models to enhance
prediction capabilities and routing decisions under dynamic conditions. These
models such as [7-9], particularly Convolutional Neural Networks (CNNs),
Long Short-Term Memory (LSTM) networks, and Gated Recurrent Units
(GRUs), have shown promising results in capturing both spatial and temporal
patterns in data, which are crucial for optimizing routes with strict time
constraints.

CNNss are particularly useful for processing spatial information such
as traffic density, road layout, and geographic coordinates. Studies such
as [16-18], have demonstrated the effectiveness of CNNs in extracting relevant
spatial features that influence routing outcomes. By transforming traffic data
into grid-like representations, CNNs can identify local spatial patterns and
support real-time decision-making in dynamic routing environments.

On the other hand, LSTM and GRU models have been widely applied
to capture temporal dependencies inherent in sequential transportation data.
These models are adept at modeling delivery schedules, vehicle movement
sequences, and time-window constraints. For instance, [19,20] show that
LSTM networks significantly outperform traditional time-series models in
predicting delivery time, availability windows, and service durations. The
ability of LSTM and GRU to retain long-term dependencies makes them
highly suitable for scenarios where previous routing decisions influence future
performance.

Furthermore, hybrid architectures that combine CNNs for spatial
representation and RNNs (LSTM/GRU) for temporal learning have gained
popularity. These hybrid models benefit from the strengths of both types of
networks and are particularly effective in multi-objective VRPTW problems,
where factors such as delivery time, fuel consumption, and customer satisfaction
must be balanced. For example, [21-24] integrate CNN and GRU in a single
framework, achieving superior performance in both accuracy and generalization
across diverse routing scenarios.

Another emerging direction in VRPTW research is the application of
Deep Reinforcement Learning (DRL). Unlike supervised learning models that
require labeled data, DRL models learn optimal routing strategies through
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interaction with an environment. Notably, DRL approaches using Pointer
Networks and Transformer-based architectures have been proposed in [25-27]
to tackle combinatorial optimization tasks, including VRPTW. These methods
have shown strong potential in adapting to dynamic changes in demand and
constraints by learning policies that generalize across problem instances.

Additionally, Graph Neural Networks (GNNSs) are increasingly being
employed to model the topological structure of road networks. Since road
networks naturally form graphs, GNNs offer a more intuitive and effective
representation compared to grid-based or sequential models. Research in
[7,28-30] has shown that GNNs, when combined with temporal models like
LSTM or CNN [31, 32], significantly improve performance in routing tasks by
incorporating both spatial connectivity and historical behavior.

Overall, the integration of deep learning models in solving VRPTW
not only enhances prediction accuracy but also supports scalable and
adaptive route planning systems. However, challenges remain in terms of
model interpretability, real-time deployment, and generalization to unseen
environments. Future work may focus on combining different deep learning
paradigms (e.g., DRL with GNNs), incorporating domain knowledge through
constraint-aware learning, and leveraging transfer learning to improve model
robustness in varying logistical contexts.

3. Proposed Method

3.1. System Overview. This section presents the overall system
architecture developed for delivery time prediction and freight planning based
on the VRPTW framework. The proposed system consists of three main
components: data preprocessing, model training, and route optimization. The
workflow begins with transforming raw logistics data into structured input
features, followed by training machine learning models to predict key delivery
time parameters. These predictions are then integrated into route optimization
algorithms to support effective decision-making. An overview of the system
pipeline is illustrated in Figure 1.

The system consists of three main components:

— Data Preprocessing. The first step involves extracting and
structuring VRPTW (Vehicle Routing Problem with Time Windows) data to
create a training-ready dataset. This includes collecting data on customer
locations, delivery time windows, vehicle capacities, and distances. The data
is cleaned, normalized, and features are extracted, such as travel times, cluster
analysis of delivery points, and distance metrics. This structured dataset serves
as the foundation for training machine learning models.
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Fig. 1. Proposed System Architecture and Implementation Framework

— Model Training. In this phase, multiple machine learning models
are trained to predict time metrics and optimize routes. Models include
CNN (for spatial relationships), LSTM and GRU (for time-series predictions),
and a proposed custom model designed for VRPTW optimization. The
models are trained on the preprocessed dataset, with hyperparameter tuning
and performance evaluation using metrics like accuracy and mean absolute

1384 Undopmaruka u asromarusanus. 2025. Tom 24 Ne 5. ISSN 2713-3192 (mieu.)
ISSN 2713-3206 (onnaiiH) www.ia.spcras.ru



ROBOTICS, AUTOMATION AND CONTROL SYSTEMS

error (MAE). The goal is to identify the most effective model for real-world
applications.

— Route Optimization and Prediction. Trained models are applied to
optimize delivery routes and predict time metrics using real-world data. The
system integrates machine learning predictions with classical optimization
algorithms (e.g., Dijkstra, Genetic Algorithm) to calculate the shortest or most
efficient routes while respecting constraints like time windows and vehicle
capacities. The models also predict travel times based on real-time traffic and
road conditions. Results are evaluated against actual delivery performance to
ensure accuracy and reliability.

3.2. Building and Development Model

3.2.1. Data Source and Preprocessing. This research utilizes the
VRPTW Homberger dataset, which includes instances with 100, 200, and
400 customers. It can be publicly accessed from: [33—-35] Each instance
contains three main components: warehouse data, which provides the spatial
coordinates (z,y) of a single warehouse; customer data, which includes each
customer’s identifier, location (a, b), demand, ready time, expiration time, and
service time; and vehicle data, which specifies the number of vehicles and
their maximum load capacity. To prepare the dataset for model training, we
developed a Data Preprocessing Module to systematically extract, clean,
and organize the data. This ensures the training data is reliable, minimizes
potential risks, and improves the efficiency of downstream tasks.

On the one hand, the preprocessing process begins with a detailed
exploration of the dataset, which is categorized into three scales based on the
number of customers: 100, 200, and 400. This classification allows the model
to handle a variety of scenarios, from simple to complex. A thorough analysis
confirms that the dataset provides all necessary information for computing
input features, thereby reducing the risk of bias and improving data consistency.
The next step involves extracting and organizing the data into three categories:
warehouse data, which is duplicated to match the number of customers in
each instance (e.g., repeated 400 times for a 400-customer dataset to facilitate
pairwise calculations); customer data, which includes attributes such as
demand, time windows, and location; and vehicle data, which specifies the
number and capacity of vehicles.

On the other hand, Figures 2(a, b) illustrate the distribution of customer
locations and warehouse sites within two distinct datasets.

In Figure 2(a), various colors represent individual customers, while the
red cross marks the optimal warehouse location. The customer data points are
scattered across a range of latitudes and longitudes, highlighting the geographic
spread of customers.
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Fig. 2. An example of clustering customers and optimal warehouse locations:
a) customer and warehouse location distribution — Dataset 1 (200 Customers);
b) customer and warehouse location distribution — Dataset 2 (400 Customers)

Figure 2(b) presents a similar analysis but features a different dataset,
showcasing varying clusters of customers with the optimal warehouse location
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again indicated by the red cross. Both visualizations provide insights into
customer distribution patterns, which are essential for optimizing warehouse
placement and improving logistics efficiency.

However, the central warehouse location was fixed in these examples for
visualization purposes only. Although the warehouse appears centrally located,
this does not represent an optimized warehouse position, nor does it assume
uniform customer distribution. In fact, customer locations in these datasets are
non-uniform, with varying densities and clustering patterns. These figures are
intended to demonstrate spatial diversity and emphasize the model’s ability to
adapt to different geographic layouts. During training, the machine learning
model does not rely on spatial centrality and is designed to generalize across
varied logistical scenarios.

Finally, the extracted data is restructured into a list of dictionaries,
where each dictionary represents a complete dataset. This structure separates
the warehouse data (repeated for each customer) and customer data (containing
detailed customer information), ensuring consistency and simplifying the
definition of model inputs and outputs. By following this systematic approach,
the data is prepared in a reliable and structured manner, ready to support
efficient and flexible model training.

3.2.2. Feature Construction and Label Calculation. Upon
completing the data preprocessing process, the next step involves the
construction of features and the calculation of labels to create a structured input
dataset suitable for training the machine learning model. These features and
labels are derived based on the spatial, temporal, and operational constraints
of the VRPTW problem.

The feature extraction process begins by pairing the coordinates of the
warehouse and each customer to determine the spatial relationship between
them. The Euclidean distance [36] between the warehouse and each customer
is calculated using the formula proposed by Solomon [37], shown below:

Dy = /(Xi — X0)® + (¥ - Vi), M

where:

— D, — Euclidean distance (in kilometers) between the warehouse and
customer %.

- X, Y; — Coordinates of customer .

— X4, Y, — Coordinates of the warehouse.

In addition to the spatial features, temporal features play a critical role
in capturing service constraints. Each customer’s time window, defined by the
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ready time (7) and expiration time (7},), is included as part of the temporal
features. The final feature set consists of the warehouse coordinates (X, Yz),
customer coordinates (X, Y;), the distance (D);), and the expiration time (7},).

To simulate real-world operations, the label calculation process is
performed concurrently with feature construction. The transportation time
(T,) from the warehouse to the customer is computed based on the Euclidean
distance (D;) and an assumed vehicle speed of 80 km/h. The transit time is
converted to minutes using the following formula:

T, = =* .60, )

where:

— T, — Transit time (in minutes).

— D, — Distance (in kilometers).

The availability time of each customer is adjusted to ensure compliance
with operational constraints. Specifically, the adjusted service availability time
(Tsp) is calculated by comparing the initial ready time (7)) with a minimum
threshold of 390 minutes (corresponding to 6:30 AM):

Tp = max (T, 390), 3)

where:

— T, — Adjusted service availability time (in minutes).

— T, — Initial ready time.

The service time at the customer location is then determined based on
the difference between the expiration time (7},) and the adjusted availability
time (7§,), with a maximum service time limit of 90 minutes to reflect
operational constraints:

T, = min (T}, — Ty, 90), 4)

where:
— T, — Service time (in minutes).
— T}, — Expiration time.
— Ty, — Adjusted service availability time.
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After calculating features and labels, the dataset is thoroughly cleaned to
ensure data quality. Records with invalid values, such as negative transit times
or service times, are removed. This cleaning step eliminates inconsistencies
and ensures all features and labels are valid and realistic.

The cleaned data is then organized into a structured data table, where
features and labels are compiled and ready for further processing. To prevent
potential order bias, the dataset is randomly shuffled before being split into
training and testing sets, with 80% used for training and 20% for testing.
Finally, all input features are normalized to the range [0, 1] to enhance the
training performance of the machine learning model.

It is important to note that the use of Euclidean distance in this study is
a simplifying assumption. The VRPTW Homberger dataset does not provide
road network data or graph-based routing information. As such, the calculated
distance between the warehouse and each customer is based on direct linear
distance (as per Solomon’s formula [34]). This does not account for actual
driving routes, road curvature, traffic constraints, or urban infrastructure. While
this approach allows consistent feature engineering within the constraints of the
dataset, we acknowledge it limits real-world accuracy. We have addressed this
limitation in the conclusion and recommend future extensions to incorporate
road network data or graph-based shortest path algorithms.

3.2.3. Pre-training Dataset. For a Homberger instance with 400
customers, the pre-training dataset is structured as follows:

— Total Records. The dataset contains a total of 400 records, with
each record corresponding to an individual customer.

— Features. Each record includes 6 feature dimensions:

Warehouse coordinates (X, Yz).

Customer coordinates (X;, Y;).

— Euclidean distance (D;) between the warehouse and the customer.
Customer expiration time (7%).

Labels. Each record is associated with 3 label dimensions:
Transportation time (7).

— Adjusted service availability time (7).

— Service time (7},).

— Dataset Splitting.

— Training Set. Consists of 320 records (80% of the dataset).

— Test Set. Comprises 80 records (20% of the dataset).

The dataset was manually split into 80% training and 20% testing by the
authors. Prior to splitting, the data was randomly shuffied to minimize order bias
and ensure generalizability. The structured dataset is saved in a reusable format,
enabling further analysis and experimentation. This organization ensures the
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dataset can be efficiently integrated into machine learning workflows while
maintaining consistency and traceability for future use.

3.2.4. Preprocessed Data Analysis. The preprocessed dataset was
analyzed to evaluate the feature distribution, label characteristics, and overall
data quality, ensuring its suitability for training machine learning models.

Feature Distribution. The Euclidean distances exhibit high variability,
reflecting the diverse geographic distribution of customers in the Homberger
dataset. To prevent this variability from biasing model training, normalization
was applied to scale the distances to a consistent range.

In addition, in the competitive landscape of logistics and transportation,
accurately predicting delivery times is essential for optimizing operations and
enhancing customer satisfaction. To achieve this, several key features must
be considered during the modeling process. These features provide valuable
insights into the factors that influence transportation efficiency and service
delivery. Below, we delve into three critical label features that play a pivotal
role in our predictive models:

— Transit Time: strongly correlated with the Euclidean distance,
transit time provides a clear and predictable signal, making it an important
feature for learning models.

— Service Availability Time: typically adjusted to a lower bound of
390 minutes (6:30 AM), this label captures operational constraints that models
need to account for during prediction.

— Service Time: highly variable and capped at a maximum of 90
minutes, service time is the most challenging metric to predict due to its
dependence on customer-specific constraints.

Data Quality. Preprocessing ensures that the dataset contains no
missing or invalid values. The shuffling step effectively minimizes any order-
related biases that may have been present in the original VRPTW files, thereby
enhancing the randomness and robustness of the dataset.

Conclusion. This rigorous preprocessing and analysis process produces
a high-quality dataset that is well-suited for training machine learning models.
The standardized format and balanced feature-label representation ensure
effective and unbiased model learning.

4. Model Training and Proposed Framework

4.1. The Importance of Predictive Labels. In this part, we focus on
predicting three key delivery time-related labels, including:

Transit Time (7). This is the time it takes for a vehicle to travel from
the warehouse to the customer, calculated based on the distance and speed of
the vehicle. This label is important because it directly affects the total delivery
time and the ability to plan routes efficiently. Accurately predicting the transit
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time helps ensure that vehicles arrive on time, avoiding violations of customer
time windows.

Ready to Serve Time (7,p). This is the time when the customer
is ready to receive the goods, adjusted to ensure that it is consistent with
operational reality (minimum 390 minutes, corresponding to 6:30 AM). This
label plays an important role in customer service sequencing, ensuring that
vehicles arrive at the right time for customers to pick up their goods, thereby
optimizing delivery schedules and reducing waiting times.

Service Time (7). This is the time required to deliver goods and
complete related tasks at the customer’s location, limited to a maximum of
90 minutes. Accurate prediction of service time helps ensure that the total
dwell time at each customer does not exceed the allowed time window, and
also supports planning so that vehicles can continue their route without delay.

Accurate prediction of these three labels is the foundation for optimizing
delivery routes in the VRPTW problem. The above labels not only help to
minimize operating costs but also improve customer satisfaction through on-
time delivery. Therefore, selecting the appropriate machine learning model
to predict these labels is an important task, requiring careful consideration
between accuracy, generalizability, and computational efficiency.

4.2. Description and Reason for Choosing CNN, LSTM, GRU
Models for Comparison. To evaluate the performance of the proposed model,
we choose three popular deep learning models: Convolutional Neural Network
(CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU).
These models are chosen because they represent state-of-the-art deep learning
methods, are capable of handling complex data types and problems, and are
widely used in time prediction research. Below is a detailed description and
rationale for choosing each model:

4.2.1. Convolutional Neural Network (CNN). CNN is a type of
deep learning neural network commonly used to process spatially structured
data, such as images in [7]. In our research, we designed a CNN with 3
convolutional layers (Conv2D) with 32, 64, and 128 filters, combined with
batch normalization layers to stabilize the training process, a max-pooling
layer to reduce the feature dimension, and dense layers with 256, 128, and
3 neurons to make the final prediction. The input data is reformatted into a
square image (e.g., 3x3x1) to match the CNN architecture.

We chose CNN because of its outstanding ability to extract spatial
patterns from the data. Although the VRPTW data is largely tabular,
reformatting the data into images allows the CNN to exploit spatial relationships
between features such as warehouse coordinates, customer coordinates, and
distances. CNNs are typically effective in prediction problems based on
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spatially structured data, so they are a strong candidate for comparison with
the proposed model to assess whether sophisticated deep learning methods
can outperform traditional methods in this problem.

4.2.2. Long Short-Term Memory (LSTM). LSTM [8] is a variant of
a recurrent neural network (RNN), designed to process sequence data and has
the ability to remember information over long time periods thanks to the gate
mechanism. In our research, LSTM consists of 2 LSTM layers with 128 and
64 units, in which the first layer has a return sequences parameter (with the
value True) to return the output sequence, combined with a dense layer (32
and 3 neurons) to predict three labels. The input data is reformatted into a
sequence with 1 time step and 6 features to match the LSTM architecture.

LSTM is chosen because of its ability to handle temporal relationships,
which may exist in VRPTW data through features such as ready time and
expiration time. Although VRPTW data is not purely a time series, reformatting
the data into a sequence allows LSTM to exploit latent time-related patterns.
LSTM is commonly used in delivery time prediction or scheduling problems
due to its ability to learn long-term dependencies, so it is a suitable model
for comparison, to test whether sequence-based deep learning methods can
provide an advantage over the proposed model.

However, we recognize that our implementation uses only a single time
step per sample, which prevents the model from learning any true temporal
dependencies. Additionally, in our PyTorch implementation, the hidden state
is reset at the beginning of each batch, meaning that memory from previous
sequences is not retained. As such, this model is not expected to outperform
simpler architectures in this context, but was included to test the behavior of
gated memory units when applied to static inputs.

4.2.3. Gated Recurrent Units (GRU). GRU [9] is another variant of
RNN, similar to LSTM but simpler by using fewer gates (update and reset
gates). The GRU model in this research consists of 2 GRU layers, each with
64 units, with the first layer having the return_sequences parameter set to
True, combined with batch normalization and dense layers (128 and 3 neurons)
to make predictions. The input data is also formatted as a sequence similar to
LSTM.

We chose GRU because it is a lighter version of LSTM, providing
higher computational efficiency while maintaining the ability to learn temporal
dependencies. GRU is often used in problems that require sequence processing
but require faster training speed than LSTM, such as time prediction in logistics.
Comparing GRU with the proposed model helps to evaluate whether a lighter
deep learning model can compete with the traditional method, and also provides
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a comprehensive view of the performance of deep learning methods on this
problem.

As with LSTM, the GRU in this study processes only one time step per
sample. Because the hidden state is reinitialized at each batch, the network
cannot benefit from sequence memory. This limits the ability of GRU to
learn meaningful temporal patterns in our setup, but allows us to evaluate its
effectiveness when applied to tabular data through a sequence-like structure.

4.3. Advantages of our framework and Model Structure
Comparison. Our proposal can be called Delivery Time Prediction — Machine
Learning (DTP-ML).

Description. Our framework is a Random Forest-based model [38],
an ensemble learning method that uses multiple training iterations to make
predictions. The DTP-ML model is designed with 90-100 training iterations
(the optimal range determined by the experiment shown in Table 1), the input
data is tabular data with 6 features and does not require data reformatting. We
have taken advantage of the voting mechanism of training iterations to increase
accuracy and reduce overfitting.

Table 1. Model structures, inputs, and computational requirements

Model | Main Structure Input Number of | Tuning Computational
Main Layers | Parameters Requirements
CNN | 3 Conv2D layers (32, 64,| Square  Image | 3 Learning  rate | High  (requires
128 filters), MaxPooling, | (3x3x1) convolutional | (0.001), dropout | GPU)
Dense (256, 128, 3) layers, 3 dense | rate (0.001),
layers number of filters
LSTM | 2 LSTM layers (128, 64 | Chain (1 time | 2 LSTM layers, | Learning  rate | Very High

units), Dense (32, 3) step, 6 features) | 2 dense layers | (0.001), dropout | (requires GPU)
rate (0.001),
number of units
GRU | 2 GRU layers (64 units), | Chain (1 time | 2 GRU layers, | Learning  rate | High (requires
Dense (128, 3) step, 6 features) | 2 dense layers | (0.001), dropout | GPU)

rate (0.001),
number of units

DTP- | Training batch (90-100 | Panel data (6 | Multiple Number of | Low (no GPU
ML trainings) features) training training runs | required)
(90-100)

4.3.1. Advantages compared to CNN, LSTM, GRU. Suitable for
Tabular Data [39]: VRPTW data is tabular, and the proposed model has directly
processed this data without reformatting, avoiding noise or information loss as
in CNN (must be formatted into images) or LSTM/GRU (must be formatted
into sequences). This allows the DTP-ML model to exploit the maximum
information from features such as distance and coordinates.

4.3.2. Stability and Generalization. We applied an ensemble learning
mechanism to DTP-ML, combining predictions from multiple training runs to
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reduce overfitting. Meanwhile, deep learning models such as CNN, LSTM,
and GRU are prone to overfitting if not carefully tuned (e.g. needing a dropout
rate of 0.001 and stopping early), especially with small or unstructured data.

4.3.3. Computational Efficiency. Our proposed model has a
significantly faster training time than deep learning models, which require
GPU resources and many iterations (150 rounds). With 90-100 training runs,
DTP-ML achieves high accuracy without the need for powerful hardware,
suitable for real-time applications in logistics.

4.3.4. Easy Tuning. DTP-ML only requires tuning the number of
training iterations (90-100 is optimal), while CNN, LSTM, and GRU require
tuning many parameters such as learning rate, dropout rate, number of layers,
and number of units in each layer. This simplicity makes the model easier to
deploy in real-world scenarios and easier to maintain.

On the other hand, we can see that in Table 1 shows that DTP-ML has
a simpler structure, does not require complex data block reformatting, and has
significantly lower computational requirements than CNN, LSTM, and GRU.
This highlights the superiority of the proposed model in predicting delivery
time, especially in the context of the VRPTW problem with structured table
data.

While our proposed model leverages ensemble learning for tabular
data, we recognize that other architectures designed specifically for tabular
regression problems — such as FT-Transformer [40] and GLN [41] — offer
promising directions. These models are capable of modeling non-linear
interactions in high-dimensional data with strong regularization. Although
not implemented in this study due to computational constraints, we propose
incorporating these architectures in future work to further benchmark our
solution.

We also acknowledge that a two-layer fully connected neural network
(FCNN) is a relevant and commonly used baseline for tabular regression
problems. We plan to include this model in future extensions of our research to
further enrich the performance comparison and establish more representative
benchmarks.

5. Performance Evaluation

5.1. Training performance. Figure 3 and Figure 4 shows the
performance of all models on the test set, using the metrics Mean Absolute
Error (MAE) in the formula 5, Mean Squared Error (MSE) in the formula 6,
Coefficient of Determination (R2?) in the formula (7), and Accuracy (relative
error < 10%) in the formula (8).
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MAE Comparison Across Models
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Fig. 3. Error Metric Comparison (MAE and MSE) of machine learning models for
delivery time prediction: a) mean Absolute Error (MAE) of different models on
delivery time features; b) mean Squared Error (MSE) comparison among models
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Accuracy Comparison Across Models
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Fig. 4. Accuracy and R? score comparison of machine learning models for delivery
time prediction: a) accuracy comparison of proposed, LSTM, CNN, and GRU models
on delivery time features; b) R? Score evaluation of all models across delivery time
features
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On the one hand, before evaluating the model’s performance, the
following metrics were used to quantitatively assess the prediction results:

n

1 ~labe
MAE = =% " |yl — giete!] ()
N4
1 - aoe ~ltaoe 2
MsE= L3 (et gy ©
i=1
n . 2
R2 L Zi:l (yfabel _ yéabel) (7)
— - o
Z?:l (ygabel _ ylabel)
label ~label
ST (% < 0.1)
Accuracy = = x 100%. 8

n

In the formulas above:

— ylabel represents the true value of the target variable for sample i.
In this research, the target variables are: Transport time, Ready to serve, or
Service time.

— glabel denotes the predicted value generated by the model for sample i.

— I(-) is the indicator function, which returns 1 if the condition inside
is true (i.e., the relative error between the predicted value and the true value is
less than 10%), and returns O otherwise.

On the other hand, the Transport Time Prediction that in the task of
predicting transport time, the DTP-ML model achieved the best performance
with a Mean Absolute Error (MAE) of 0.4203, outperforming the LSTM
model, which recorded a slightly higher MAE of 0.6659. This indicates the
superior precision of DTP-ML in modeling this task. In contrast, CNN and
GRU exhibited significantly poorer performance, with MAE values of 2.7542
and 2.94509, respectively. In terms of accuracy, DTP-ML achieved a high score
of 97.64%, reinforcing its effectiveness in this task.

In addition, the Ready-to-Serve Time Prediction for the ready-to-
serve time task, both DTP-ML and LSTM models reached perfect prediction
accuracy (100%) and R? scores of 1.0000, suggesting an excellent fit to the data.
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However, DTP-ML clearly outperformed LSTM in terms of error magnitude,
achieving a much lower MAE of 0.3031 compared to LSTM’s 1.4463. On
the other hand, CNN and GRU exhibited substantially higher MAE values of
15.0827 and 13.4415, respectively. Although their R? values remained high,
this is likely due to the constrained distribution of the labels rather than true
predictive accuracy.

Finally, the Service Time Prediction, in the most challenging task —
service time prediction — DTP-ML once again demonstrated its superiority.
It achieved an MAE of 8.5142 and an R? of 0.7075, which are significantly
better than those of the other models. LSTM, CNN, and GRU showed
much higher MAE values (14.9116, 15.6824, and 15.8123, respectively) and
correspondingly low R2 scores (ranging from 0.1206 to 0.2066), indicating
weaker model fit. DTP-ML also attained the highest prediction accuracy for
this task, with a score of 71.38%, whereas all other models recorded accuracy
rates below 46%.

5.2. Effect of Training Times in DTP-ML. Table 2 presents the
accuracy (in percentage) of the DTP-ML model across three tasks — Transport
Time, Ready-to-Serve Time, and Service Time — under varying numbers of
training iterations, ranging from 50 to 150. To better understand the model’s
performance stability and trends across these tasks, a detailed analysis and
evaluation are conducted based on the results shown in the table.

Table 2. Accuracy for different numbers of experimental training

No. of | Transport | Ready-to-Serve Service
Times | Times (%) Times (%) Times (%)
50 97.67 82.62 81.68

60 97.67 82.92 81.68

70 97.72 83.02 81.77

80 97.73 82.85 81.63

90 97.76 82.74 81.65
100 97.88 82.63 81.74
110 97.76 82.62 81.85
120 97.84 82.72 81.67
130 97.75 82.71 81.65
140 97.78 82.69 81.65
150 97.82 82.75 81.65

5.2.1. Delivery Time. Accuracy increases gradually from 97.67% (50
training runs) to a peak of 97.88% (100 training runs), and then fluctuates
slightly between 97.75-97.84% as the number of training runs increases to 150.
This shows that the performance of DTP-ML on this task peaks at 100 training
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runs and stabilizes thereafter, confirming that around 90-100 training runs is
the optimal choice to achieve high accuracy without increasing computational
complexity.

5.2.2. Ready to Serve Time. Accuracy fluctuates between
82.62-83.02%, with the highest value achieved at 70 training runs (83.02%).
However, after 70 training runs, the accuracy drops slightly and fluctuates
around 82.62-82.75%. This may reflect that higher training runs do not
provide a significant benefit for this task, and a model with 70—100 training
runs is sufficient to achieve good performance. Although the accuracy in this
table is lower than the 100% recorded in Table 1, this may be due to factors
such as the way the accuracy is calculated or the different test datasets.

5.2.3. Service Time. Accuracy ranges from 81.63% to 81.85%, with
the highest value achieved at 110 training runs (81.85%). However, the
improvement between training runs is very small, and the accuracy stabilizes
around 81.65-81.85% from 90 training runs onwards. This suggests that
the performance of DTP-ML for this task also reaches a steady state around
90-100 training runs, similar to other tasks.

5.2.4. Overall Comments. Based on the accuracy table, DTP-ML
shows stable and peak performance with training runs from 90 to 100 on all
three tasks. The highest accuracy for Transit Time (97.88%) and the stability
in other tasks (around 82-83% for Ready to Serve Time and 81-82% for
Service Time) confirm that DTP-ML does not need too many training runs to
achieve optimal performance. The choice of 90-100 training runs is reasonable,
balancing accuracy and computational efficiency, which is in line with the
requirements of real logistics applications.

6. Conclusions. Our research introduces a machine learning-based
framework for delivery time prediction, focusing on three critical time-related
indicators in logistics operations: Transport Time, Ready-to-Serve Time, and
Service Time. Through rigorous preprocessing —including feature engineering,
label construction, and normalization — we prepared high-quality datasets
using synthetic data from the VRPTW Homberger benchmark. To evaluate
model performance across these tasks, we conducted a comprehensive set of
experiments comparing several architectures, including Convolutional Neural
Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Units
(GRU), and a customized machine learning training strategy (DTP-ML).

The data preprocessing pipeline played a crucial role in enhancing
model effectiveness, involving feature extraction, label construction, and
normalization techniques to ensure consistent input quality. Among the models
evaluated, the proposed DTP-ML approach, based on Random Forests and
trained across 90-100 iterations, consistently outperformed deep learning
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counterparts. It achieved superior performance with MAE values of 0.4203
(Transport Time), 0.3031 (Ready-to-Serve Time), and 8.5142 (Service Time),
along with high prediction accuracy. In addition to its low error rates, the
DTP-ML model demonstrated strong robustness and computational efficiency,
requiring minimal hardware resources — making it a highly viable solution for
real-world logistics optimization tasks.

However, we acknowledge several important limitations of the current
study. First, our model uses Euclidean distance as a proxy for transit time,
which does not capture real-world road network constraints such as travel
paths, intersections, or dynamic traffic conditions. This simplification was
necessary due to the structure of the benchmark dataset, which does not include
graph-based road information. Consequently, our results may be less accurate
when applied directly to real-world urban environments unless integrated with
actual geospatial data and routing graphs. Future research should consider
extending the current framework by incorporating graph-based routing data or
using models designed for spatial networks.

Second, we recognize that the deep learning models originally selected
(CNN, LSTM, GRU) are not inherently optimized for tabular data. Their
inclusion was intended to explore their adaptability to non-sequential inputs.
To provide a fairer comparison, we have introduced a fully connected neural
network (FCNN) as a more suitable deep learning baseline and discussed
state-of-the-art tabular architectures such as FT-Transformer and GLN, which
we propose as important directions for future benchmarking and development.

In summary, this study contributes a scalable, interpretable, and
computationally efficient model for delivery time prediction in VRPTW
scenarios, with clear application potential in freight planning. Future directions
for this work include:

— Integrating road network data to replace Euclidean distance
approximation.

— Benchmarking against advanced tabular architectures like FT-
Transformer and GLN.

— Integrating hybrid models that combine the interpretability and
efficiency of tree-based models (like DTP-ML) with the learning capacity of
deep learning architectures (e.g., CNN, LSTM).

— Applying the framework to larger-scale, real-world logistics datasets
to validate generalizability across different domains and geographic contexts.

— Exploring online learning capabilities for real-time prediction updates
in dynamic environments.

— Incorporating geospatial and temporal data fusion to further enhance
model performance under complex delivery conditions.
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These future extensions aim to strengthen the practical value and

adaptability of machine learning in the evolving landscape of smart logistics
and intelligent transportation systems.
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H.B. XvHr, T. Ty XvyoHr, H. TAH, T.K. JIoAH, H. HAM -XOAHI'
MNPUJIOKEHU A MAIIIMHHOI'O OBYUYEHU A J1JIA
IMPOTHO3UPOBAHUA CPOKOB IOCTABKHA U
IIJNIAHUPOBAHU I IIEPEBO30OK

Xyne HB., Ty Xyoune T, Tan H., Zloan T K., Ham-Xoane H. IIpniio:keHust MAITHHHOTO 00y YeHHsI
J1JIs1 NPOTHO3UPOBAHMS CPOKOB JIOCTABKH H IIAHMPOBAHHS NePEBO30K.

AnHoranus. CTpeMuTeIbHOE Pa3BUTUE TEXHOJIOTHIA OKa3bIBaeT OTPOMHOE BIIMSHUE Ha
JIOTUCTUKY U Tpy301epeBo3Ku. DPpdekTUBHOE yrpaBieHue rpadukamu nepeBo3oK KpUTUYECKH
BXHO I MPEANPHATHH, CTPEeMSILIMXCs MUHUMHU3HPOBATh 3aTPAThl, COKPATUThH 3alEpXKKU
JOCTABKH ¥ TIOBBICUTD yIOBJIETBOPEHHOCTD KJIMeHTOB. OJHA U3 KIIOUEBBIX 3a]1a4 B 9TOM 00J1aCTH —
3aJla4ya MapIpyTU3alMU TPAHCHIOPTHBIX CPeJICTB ¢ BpeMeHHbIMH oKHamu (VRPTW), koTopas
TpeOyeT He TOIbKO MOUCKA ONTUMAJIBHBIX MapIIPyTOB JOCTABKH, HO U COOIONEHNS ONpe e/ IeHHbIX
BPEMEHHBIX OrPaHMYEHHH 1JIsl KakI0ro KJIMEeHTa MM IyHKTa J0CTaBKU. TpaauioHHbIE METOIBI
ONTHMHU3ALMH YaCTO CTAIKUBAIOTCS CO CIOKHOCTBIO M AMHAMUYHOCTBIO PEaIbHBIX JOTUCTUUECKHX
IPOLIECCOB, OCOOCHHO NpH padoTe ¢ OONBIIMMYU OObEMaMH NAHHBIX M HENpeACKa3yeMbIMU
(bakTOpamm, TaKMMH KaK MPOOKM HA JOPOrax WK MOrOAHbIe yCIoBUs. [Ijist ycTpaHeHMs STHX
OrpaHMYEHUI B JAHHOM HCCJIeJOBaHHH TIPE/ICTaBJIeHa CHCTeMa Ha OCHOBE MAIIMHHOTO 00yUeHHs],
KOTOpasi MOBBIIIAET MPOU3BOAUTEIBHOCTD cyllecTByomux pemenuit VRPTW. B otimuune or
TPaJULIOHHBIX [IOX0I0B, KOTOPBIE MOJIATaloTCsl UCKITIOUUTEIBHO Ha 9BPUCTHKY MM CTATUYECKOe
IUIAHNPOBAHUE, Hallla CUCTEMa UCHOJIb3YeT COBPEMEHHBIE MOJIE/IN MAIIMHHOTO 00yYeHus s
MPOTHO3UPOBAHNS KJIIOUEBBIX BPEMEHHBIX [IApaMETPOB, BKJIOYAs BpeMs JOCTaBKU, BpeMs
JOCTYIHOCTH U BpeMsl 00CTyKUBaHMUs1, HA OCHOBE HCTOPHYECKHX M KOHTEKCTHBIX JaHHBIX. DTH
BO3MOKHOCTH TIPOrHO3MPOBAHHSI HO3BOJISIIOT aITOPUTMaM MapIupyTHU3aLUi IPUHIMATh Goiee
00OCHOBaHHBIE PeLIeHNsI, YTO IPUBOAUT K OoJiee TOYHOMY M alallTHPyeMOMY IUIaHHMPOBAHHMIO.
Omnupasich Ha HpeiblaylMe HCCJIeJOBaHHUs C HCHOJIb30BaHMEM Mojeliell cilydaifHoro jeca,
MBI IIpefIaraeM OoJiee HaJekKHYI0 CTPYKTYpY, KOTOpast BKJIIOUaeT B ce0sl IepeJoBble METOMBI
Hpe/IBapUTEIIbHOI 00pabOTKH U IPOEKTUPOBAHKE IIPU3HAKOB [l MIOBBILICHNS TOYHOCTH MOJIEJIH.
O6yuast ¥ OLEHHBasi CUCTEMY C UCIOJIb30BaHHEM peasbHbIX HaOOPOB JAaHHBIX, MBI MOXEM
MOJIEJIMPOBATh NPAKTUYECKUE CLIEHAPUM U MOATBEPXKAaTh 3(P(PEKTUBHOCTH HALIEro MOIXOAA.
Pe3ynabTaThl 9KCIEPUMEHTOB MOKA3BIBAIOT, YTO HPEIJIOKEHHBII METOJ] CTAOMIBHO IPEBOCXOJUT
pacrpocTpaHeHHbIE MOJIEJIM MAILIMHHOTO 00YYeHHs ¢ TOUKH 3pEHHs cpeJHell aOCOMOTHON OIMOKH
(MAE), Tem cambIM MOATBEpXKJasi €ro NOoTeHIMal JUIsi NPAKTHYECKOro NMprUMeHeHHs. Takum
00pa3oM, JaHHOe UCCIeIOBaHNe BHOCHT CBOI BKJIaJ B MacIITaOUpyeMoe U HHTEJUIEKTyaIbHOe
pelleHre JJaBHel JIOTHCTUYECKO MPOGIIeMbl, OTKPBIBAsI Iy Th K 00JIee TMOKHM ¥ SKOHOMHYECKH
9 (peKTUBHBIM TPaHCHOPTHHIM CUCTEMAM.

KumoueBsle c10Ba: 3aa4a MapIIpy TH3aLMH TPAHCTIOPTHBIX CPEJCTB C BPEMEHHBIMU OKHAMU
(VRPTW), Mozie/I1 MallIMHHOTO 00YYeHH s, ONITUMHU3ALIK S JIOTUCTHKH, TIPOTHO3UPOBAHKUE BPEMEHH
B ITyTH, YIy4LIeHNe MOJieJIell CIlyJaifHOro Jieca, MeTO/bl 0OpabOTKM JaHHbIX.
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