
 DOI 10.15622/ia.24.5.6 
 

A. KOKATE, T. JADHAV  
A NOVEL APPROACH TO EEG ARTIFACT REMOVAL USING 

ADASYN AND OPTIMIZED HIERARCHICAL 1D CNN 
 
Kokate A., Jadhav T. A Novel Approach to EEG Artifact Removal Using ADASYN 
and Optimized Hierarchical 1D CNN. 

Abstract. In neuroscience, neural engineering, and biomedical engineering, 
electroencephalography (EEG) is widely used because of its non-invasiveness, high temporal 
resolution, and affordability. However, noise and physiological artifacts, such as cardiac, 
myogenic, and ocular artifacts, frequently contaminate raw EEG data. Deep learning (DL)-
based denoising techniques can reduce or eliminate these artifacts, which degrade the EEG 
signal. Despite these techniques, significant artifacts can still hinder the performance, making 
noise removal a major requirement for accurate EEG analysis. Furthermore, for strong artifact 
removal, an Optimized Hierarchical 1D Convolutional Neural Network (1D CNN) is 
introduced. For effective feature extraction, the hierarchical CNN combines max-pooling, 
ReLU activation, and adaptive convolutional windows. An Annealed Grasshopper Algorithm 
(AGA) is employed to optimize the network parameters, further improving artifact removal. To 
ensure comprehensive exploration and convergence toward ideal CNN settings, AGA 
combines the fine-tuning accuracy of Simulated Annealing (SA) with the global exploration 
capabilities of the Grasshopper Optimization Algorithm (GOA). By utilizing a hybrid 
technique, the network can more effectively eliminate artifacts from various hierarchical levels, 
leading to a notable improvement in signal clarity and overall accuracy. The cleaned EEG data 
is represented by the recovered features in the last dense layer of the Hierarchical 1D CNN, 
which employs a sigmoid function. Based on experimental results, the proposed method 
achieved a PSNR of 29.5dB, MAE of 11.32, RMSE of 0.011, and CC of 0.93, which 
outperforms prior works. The proposed method can improve the precision of EEG artifact 
removal, which is a useful addition to biomedical signal processing and neuro-engineering. 

Keywords: electroencephalography (EEG), signal processing, Convolutional Neural 
Network (CNN), Simulated Annealing (SA), Grasshopper Optimization Algorithm (GOA). 
 

1. Introduction. A variety of electrodes, including sticky and dry 
electrodes, can be used to record EEG signals. Brain-computer interfaces 
(BCIs) can be classified as invasive, non-invasive, or semi-invasive 
depending on where the electrodes are placed [1]. Since electrodes are 
applied to the scalp, non-invasive methods are most often utilized in 
medical diagnosis, research studies, and many different BCI systems [2]. 
Electrodes applied to the scalp typically cause a significant amount of signal 
artifacts, which contaminate the signal. To create a BCI system that is 
effective, these artifacts must be eliminated [3]. The artifacts can be 
detected and eliminated using a variety of techniques. These techniques 
ought to eliminate the artifacts while maintaining the EEG signal's original 
neural activity [4]. The possibility of EEG data as a diagnostic and 
monitoring tool for a range of medical uses has been demonstrated. These 
applications include the measurement of anesthesia levels neuro-feedback 
prior to and during surgery [5], the recognition of epilepsy [6], predicting 
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the onset of epileptic seizures [7], neuro-feedback applications for patients 
with autism [8], and neuro-rehabilitation [9]. However, the EEG has been 
characterized by several inherent problems, such as the need to eliminate 
additive noises, or EEG artifacts, which can be produced by a variety of 
noise sources, including muscular movements or interference from power 
lines [10]. The primary purpose of the EEG artifact removal techniques is to 
remove artifacts from the EEG data. The full utilization of EEG data for 
clinical and industrial applications is made possible by the effectiveness of 
EEG artifact removal techniques [11]. 

There are several kinds of issues with the EEG artifact removal 
techniques. The nonlinearities of the noise being added to the EEG signal or 
the complexity of the procedures may be the cause of these difficulties [12]. 
The non-stationary and non-linear nature of the EEG signal makes it 
challenging to detect artifacts without sacrificing neural information. 
Processing the signal becomes challenging due to artifacts that can affect its 
spectral, temporal, and occasionally spatial domains [13]. In this instance, 
artifacts cannot be entirely eliminated during pre-processing by simple 
filtering. There is still no technique that can find and eliminate every kind of 
artifact, despite the development of numerous hybrid approaches [14]. EEG 
artifacts have been eliminated by recent researchers using various Time-
Frequency Representation (TFR)-based signal decomposition techniques. 
To extract the fine-scale fluctuations in EEG signals, several TFR 
techniques are used, such as Wavelet Transform (WT), Short Time Fourier 
Transform (STFT), etc. [15]. EMG artifacts are removed using a variety of 
techniques, the most widely used being signal decomposition approaches 
and Blind Source Separation (BSS) techniques like Canonical Correlation 
Analysis (CCA) and ICA. This experimentation yields validated 
computation time and accuracy results after the artifacts are effectively 
removed using both BSS methods [16]. 

Currently, instead of exploring ways to modify the conventional 
methods, researchers are more focused on combining different traditional 
algorithms that already exist to create hybrid techniques. The process of 
eliminating artifacts has been made more accurate, automated, and efficient 
by combining the algorithm's beneficial features [17]. As of yet, standard 
norms or optimal methods for artifact elimination have not been established, 
although neurologists may find this to be crucial for a successful clinical 
diagnosis [18]. Despite its superior performance and reasonable results, this 
model's dependence on the threshold function and wavelet form causes data 
loss in EEG signals [19]. Numerous obstacles must be addressed by existing 
models. As a result, DL is employed to address problems with traditional 
approaches [20].  
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Potential techniques for automatically extracting complex data 
characteristics at high degrees of abstraction have been made possible by 
recent advances in DL methodology [21]. Additionally, it offers 
several methods for effectively eliminating ocular artifacts from EEG 
signals. The benefits of utilizing DL techniques include strong 
generalization ability, time savings, and the elimination of the need for 
additional EOG reference signals, among others [22]. When it comes to 
identifying and reducing EEG signal artifacts, the majority of DL models 
offer high clearance. The decoding and classification of EEG signals, which 
are typically associated with low signal-to-noise ratios (SNRs) and high 
data dimensionality, have been the focus of DL frameworks in recent times 
due to the growing availability of large EEG datasets. Hence, there is a need 
to develop a novel network to overcome the aforementioned issues in the 
removal of artifacts from EEG signal. 

The key contributions of this work are as follows: 
- Introduces a novel DL-based architecture that addresses EEG 

artifact removal, enhances signal clarity, and balances class distributions in 
difficult feature space areas by merging a Hierarchical 1D CNN and the 
ADASYN. 

- To enhance the model's capacity to precisely extract features 
and eliminate artifacts from EEG data by introducing an optimized CNN 
with adaptive windows, max-pooling ReLU activation, and a sigmoid 
classifier. 

- To optimize CNN parameters for effective artifact removal and 
prevent overfitting, this method leverages the global search ability of GOA 
and the fine-tuning precision of SA. 

The remaining work is structured as follows: Section 2 discusses the 
related research from the previous work, Section 3 explains the proposed 
approach, Section 4 reveals the results of the proposed method and 
discusses previous work, and Section 5 summarizes the article. 

2. Literature Survey. In paper [23] the authors proposed an 
intelligent model for artifact removal in EEG signals, comprising training 
and testing phases. The model utilized an improved 1D-CNN, with 
parameters fine-tuned using a hybrid optimization algorithm, SM-EFO, 
which combines Spider Monkey Optimization (SMO) and Electric Fish 
Optimization (EFO). However, the model faced potential overfitting and 
increased computational complexity due to the integration of multiple 
optimization algorithms. 

Study [24] developed a deep 1D CNN for automatic identification of 
abnormal and normal EEG patterns. The model's integration with 
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optimization mechanisms added complexity and demanded high 
computational resources, especially during long-term data analysis. 

Paper [25] implemented a multistage adaptive cascaded noise 
canceller to remove artifacts such as baseline wander, motion, muscle, and 
power line interference from ECG signals. Despite its performance, relying 
on a single algorithm to update filter weights across all stages limited 
adaptability to different artifact types. 

In paper [26] the authors introduced a deep learning-based model to 
detect and remove ocular artifacts using Pisarenko harmonic decomposition, 
DWT, PCA, and ICA for feature extraction. An optimized DCN, fine-tuned 
via DS-EFO, was employed for artifact removal. Nonetheless, the model 
showed a slight drop in accuracy and needed further improvements for 
effectively detecting ocular artifacts. 

In paper [27] the author addressed ECG-induced artifacts in EEG 
using the RVFLN method and RLS algorithm. Although adaptive filtering 
was achieved, the approach was susceptible to failure when the artifact 
frequency was unknown or difficult to determine. 

Paper [28] developed a DNN-based model with convolutional layers 
for artifact removal from long-term EEG recordings sourced from the 
EPILEPSIAE database. However, the method was mostly applicable to data 
acquired at similar sampling rates, limiting its broader applicability. 

Study [29] combined an LSTM network with a kNN classifier to 
detect and remove eye-blink and muscle artifacts from EEG signals. Artifact 
detection was based on features such as peak-to-peak amplitude and 
variance. However, expert-averaged evaluations were recommended to 
improve accuracy and system training. 

Paper [23] introduced a model named “AnEEG” for artifact removal 
using deep learning, outperforming traditional wavelet methods. Yet, it 
required manual identification of artifact frequency patterns, which reduced 
adaptability to unknown artifact conditions and limited generalizability. 

Study [30] presented LSTEEG, an LSTM-based autoencoder for 
artifact detection and correction in EEG signals. The model effectively 
captured non-linear dependencies and enhanced downstream EEG 
processing. Nonetheless, its reliance on previously seen artifact patterns 
limited its performance on novel artifact types. 

In paper [31] the authors proposed DWINet, which utilized the 
image dehazing capabilities of DRHNet by treating EEG denoising as an 
image-processing problem. Although effective in general denoising, 
DWINet underperformed in handling muscle artifacts due to the model's 
visual-domain foundation. 
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Overall, earlier EEG artifact removal techniques faced challenges 
such as overfitting from hybrid optimization, high computational demands, 
limited adaptability to various artifact types, sensitivity to artifact frequency 
estimation, and constraints tied to acquisition setups. These limitations 
motivated the development of a novel network to address these issues and 
enhance artifact removal performance in EEG analysis. 

3. Proposed Method. This study integrates Adaptive Synthetic 
Sampling (ADASYN) to address class imbalance by generating synthetic 
samples in complex feature spaces, ensuring balanced data representation. It 
incorporates an Optimized Hierarchical 1D Convolutional Neural Network 
(CNN), which uses adaptive convolutional windows, max-pooling, and 
ReLU activation to extract relevant features. The final dense layer with 
sigmoid activation delivers the cleaned EEG output. Furthermore, the 
Annealed Grasshopper Algorithm (AGA) is employed to fine-tune CNN 
parameters by combining the global search capabilities of the Grasshopper 
Optimization Algorithm (GOA) with the precise local optimization of 
Simulated Annealing (SA). AGA dynamically tunes the kernel sizes, 
strides, and learning parameters of the CNN during training, ensuring that 
the network remains effective across various artifact conditions. This hybrid 
optimization strategy dynamically adjusts the CNN’s convolutional window 
sizes, pooling parameters, and learning rates based on the EEG signal's 
noise characteristics, allowing for effective generalization across different 
artifact types. The proposed method's block diagram is presented in 
Figure 1. 

Figure 1 illustrates the proposed signal denoising and optimization 
framework. The raw input signal is first processed using Adaptive Synthetic 
Sampling (ADASYN) to address class imbalance by generating synthetic 
minority samples. The balanced data is then passed into the Optimized 
Hierarchical 1D CNN, which is composed of convolutional, ReLU, max-
pooling, flatten, dense, and sigmoid layers to extract relevant features. The 
CNN parameters are tuned using the Annealed Grasshopper Algorithm 
(AGA), which optimizes hyperparameters such as kernel size, stride, 
pooling configuration, and learning rate, with updates guided by binary 
cross-entropy loss until the stopping criteria are satisfied. The resulting 
optimized CNN parameters are then applied in the final training phase. 

The cleaned, denoised EEG waveform refers to the reconstructed 
signal obtained after processing by the optimized CNN. In this stage, 
unwanted artifacts such as ocular (EOG), muscular (EMG), and cardiac 
(ECG) noise are removed, while the essential brain activity patterns are 
preserved. This denoised output provides a more accurate representation of 
neural activity, making it suitable for further clinical or research analysis. 
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Fig. 1. Schematic block for the proposed approach 

 
3.1. Adaptive Synthetic Sampling Approach (ADASYN). The 

majority of datasets used for classification are imbalanced. One group (the 
minority class) is underrepresented in the dataset, whereas the majority class 
has more data in the other set. Algorithms for ML cannot function well in 
these situations. Data sampling techniques are used to classify unbalanced 
data sets to improve the efficiency of ML classification algorithms. The 
SMOTE method has been enhanced with the ADASYN method. It does the 
following tasks: It operates on two sets of data. The data in the minority 
class roughly corresponds to the data in the majority class for both the 
minority and majority classes [30]. 

Input: The training data set 𝐷𝐷𝑡𝑡𝑡𝑡contains 𝑛𝑛 samples {𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖}, 
𝑖𝑖 =  1, . . . ,𝑛𝑛, where 𝑏𝑏𝑖𝑖  ∈  𝐵𝐵 =  {1,−1} indicates label of class identity 
connected to 𝑎𝑎𝑖𝑖, and 𝑎𝑎𝑖𝑖 indicates within the n-dimensional space of features, 
𝐴𝐴. Define 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶 , and 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶as the number of examples from the minority 
class and the number from the majority class, respectively. Consequently, 
𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶 > 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶 and 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶 + 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶 = 𝑀𝑀. 

Determine the degree of the class imbalance using (1): 
 

𝐷𝐷𝐶𝐶𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶
𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶� , (1) 

 
where 𝐷𝐷𝐶𝐶𝐶𝐶 ∈ (0,1]. 

When 𝐷𝐷𝐶𝐶𝐶𝐶 < 𝐷𝐷𝐶𝐶𝐶𝐶𝑡𝑡ℎ, which is a predetermined threshold for the 
highest amount of class imbalance ratio that can be tolerated, then, 
determine the number of artificial data instances required for the minority 
class using (2): 

 
𝐺𝐺 = (𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶 −𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶) × 𝛾𝛾, (2) 
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where 𝛾𝛾 indicates the factor specifies the intended balance level following 
the production of the artificial data, which has a range of [0, 1]. The 
generalization procedure results in the production of a fully balanced data 
set if 𝛾𝛾 = 1. Determine the K nearest neighbors for each example 𝑎𝑎𝑖𝑖  ∈
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 using the Euclidean distance in n-dimensional space. 
Then, compute the ratio 𝑟𝑟𝑖𝑖 which is defined as (3): 
 

𝑟𝑟𝑖𝑖 = ∆𝑖𝑖
𝐾𝐾� , 𝑖𝑖 = 1, … … ,𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶, (3) 

 
where 𝑟𝑟𝑖𝑖  ∈  [0, 1] because ∆𝑖𝑖 indicates the number of examples in the 𝐾𝐾 
nearest neighbors of 𝑎𝑎𝑖𝑖that are members of the majority class; 

To make 𝑟̂𝑟𝑖𝑖 a density distribution (∑ 𝑟𝑟𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶
𝑖𝑖=1 = 1), normalize 𝑟𝑟𝑖𝑖 by 

𝑟̂𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖
∑ 𝑟𝑟𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶
𝑖𝑖=1

� . 

For every minority example 𝒂𝒂𝑖𝑖, determine how many synthetic data 
examples must be created using (4): 

 
𝑔𝑔𝑖𝑖 = 𝑟̂𝑟𝑖𝑖 × 𝐺𝐺, (4) 

 
where 𝐺𝐺 indicates the total amount of instances of artificial information 
required to be created, as per (2), for the minority class. 

Create 𝑔𝑔𝑖𝑖 synthetic data examples for each minority class data 
example 𝒂𝒂𝑖𝑖 using the procedures listed below: 

From 1 to 𝑔𝑔𝑖𝑖, complete the loop:  
(i) For data 𝒂𝒂𝑖𝑖, randomly select one minority data example (𝒂𝒂𝑧𝑧𝑧𝑧) 

from the K nearest neighbors.  
(ii) Produce the example of synthetic data using (5): 
(iii)  

𝑺𝑺𝑖𝑖 = 𝒂𝒂𝑖𝑖 + (𝒂𝒂𝑧𝑧𝑧𝑧 − 𝒂𝒂𝑖𝑖 ) × 𝜆𝜆. (5) 
 
In n-dimensional spaces, the difference vector is represented by 

(𝒂𝒂𝑧𝑧𝑧𝑧 − 𝒂𝒂𝑖𝑖 ), and 𝜆𝜆 is a random number with a range of [0, 1]. Close the 
Loop. 

The fundamental principle of the ADASYN algorithm is that the 
quantity of synthetic samples needed for each minority data should be 
automatically calculated. Following ADASYN, the dataset will display a 
distribution of data that is balanced based on the β coefficient's desired 
balance level. Additionally, the learning algorithm will be forced to focus 
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on the examples that can be difficult to learn. In contrast to the SMOTE 
algorithm, which generates an equivalent quantity of synthetic samples for 
each instance of minority data, this is a significant departure. The 
preprocessed signal is fed to the CNN and will be discussed below. 

3.2. Optimized Hierarchical 1D CNN. Over the past few decades, 
1D-CNNs have become increasingly popular within the DL field. It has 
been used for raw continuous signals in a variety of contexts by effectively 
removing various signals' artifacts. Several features make up the 1D-CNN 
architecture, including enhanced spatiotemporal feature mining structure, 
automatic feature learning to achieve adaptive design, and faster 
classification accuracy [31]. Because of the condensed and straightforward 
design of 1D-CNNs, they also exhibit feasible efficacy concerning 
affordable hardware and instantaneous software. The only 1D convolutions 
that can be performed with this model are scalar additions and 
multiplications. EEG signal denoising is better with 1D-CNN, particularly 
for prolonged sections. It generally uses an end-to-end design to eliminate 
EEG signal artifacts. Ultimately, the noisy signal is rebuilt to produce the 
network output. Since the time sequences of EEG signals are independent 
with only one dimension, a 1D-CNN is employed to remove artifacts via the 
1D convolution layer. In the 1D-CNN architecture, a fixed-size overlapping 
window is used to separate the signals from the EEG into sub-signals. It is 
made up of fully connected layers, maximum pooling layers, and various 
convolution layers. The convolution layer convolves the output of the 
feature vector using the preceding layer's convolution kernel. The output 
feature vector is created using the non-linear activation function. 

The input signal sequence is represented as 𝑆𝑆𝑆𝑆���⃗ 𝑖𝑖, where  
𝑖𝑖 =  1, 2,⋯ ,𝑚𝑚𝑖𝑖, and the filter is represented as 𝐹𝐹𝑖𝑖 with 𝑖𝑖 =  1, 2,⋯ ,𝑛𝑛. This 
means that the length of the filter 𝑛𝑛 must be less than the length of the 
signal sequence 𝑚𝑚𝑖𝑖. Partial convolution is used to perform the filter 
depending on the preceding layer's input features. (6) formulates the 1d-
CNN's convolved output 𝑎𝑎𝑖𝑖. 

 
𝑎𝑎𝑖𝑖 = ∑ 𝐹𝐹𝑔𝑔 ×𝑛𝑛

𝑔𝑔=1 𝑆𝑆𝑆𝑆� 𝑖𝑖−𝑔𝑔+1. (6) 
 
In this instance, the local connection network is formed by 

correlating every neuron in the 𝑑𝑑𝑡𝑡ℎlayer with neurons in the (𝑑𝑑 −  1)𝑡𝑡ℎlayer 
of the local window. The non-linear mapping is carried out by the activation 
function 𝑎𝑎𝑎𝑎�𝑆𝑆𝑆𝑆� � in the convolution layer. (7) describes the function that an 
activation, a modified linear unit, uses in this 1D-CNN model to increase 
convergence speed. 
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𝑎𝑎𝑎𝑎�𝑆𝑆𝑆𝑆� � = max (0, 𝑆𝑆𝑆𝑆� ). (7) 
 
Additionally, (8) derives the input of the 𝑞𝑞𝑡𝑡ℎ neurons in the 𝑑𝑑𝑡𝑡ℎ 

layer. 
 

𝐶𝐶𝑞𝑞𝑑𝑑 = 𝑎𝑎𝑎𝑎(∑ 𝐹𝐹𝑟𝑟𝑑𝑑 × 𝐶𝐶𝑞𝑞−𝑟𝑟+1𝑑𝑑−1𝑛𝑛
𝑟𝑟=1 + 𝑂𝑂𝑂𝑂𝑞𝑞)=𝑎𝑎𝑎𝑎(𝐹⃗𝐹 

𝑑𝑑 × 𝐶𝐶(𝑞𝑞−𝑛𝑛+1:𝑞𝑞)
𝑑𝑑−1 + 𝑂𝑂𝑂𝑂𝑞𝑞). (8) 

 
In the aforementioned formula, the 𝑚𝑚𝑡𝑡ℎ dimension filter is denoted 

by 𝐹⃗𝐹 
𝑑𝑑 ∈ ℜ𝑚𝑚, which is the same for each neuron in the convolution layer. 

The offset parameters are denoted as 𝑂𝑂𝑂𝑂𝑞𝑞, where 𝑞𝑞 =  1, 2,⋯ ,𝑛𝑛𝑖𝑖. Due to 
many benefits, including simplified array activities, easier training, and 
easier execution all contribute to decreased computational complexity with 
a small number of hidden layers, 1D-CNNs operate effectively in 1D EEG 
signals. The model has demonstrated improved performance in extracting 
clean signals from noisy inputs. 

The 1D-CNN architecture offers distinct features for removing 
artifacts from EEG signals, but it also presents several difficulties, including 
complexity, being prone to error, and a lack of noise elimination features, 
and the unique characteristics of EEG signals, such as diversity, time 
variation, uncertainty, and nonlinearities, which make them difficult to 
process linearly. In the same way, it is essential to use non-linear denoising 
for EEG signals. Furthermore, because of the gradient explosion issue and 
degradation phenomenon, training the deep network is essential to getting 
the intended outcome. In addition, since EEG signals are typically lengthy 
and intricate 1D signals, an effective 1D CNN must be created in this model 
to extract the more intricate features of the artifacts removal model from 
EEG signals that are non-linear. By combining the benefits of CNN with the 
non-linear properties of EEG signals that change over time, a new and 
improved 1D-CNN utilizing the AGA is proposed as a solution to these 
problems. This developed 1D-CNN immediately learns its biased and non-
linear deep features from the EEG signals that have various artifacts. After 
that, the learned features are used to distinguish between them, and 
reconstruction is carried out to produce clean EEG signals. Figure 2 depicts 
the Optimized Hierarchical 1D CNN architecture given below. 
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Fig. 2. Optimized Hierarchical 1D CNN architecture 
 

The convolutional layer is the first layer in a CNN. To extract the 
features from the input feature map, it makes use of the receptive fieldset. A 
set of filters is used by the two-dimensional convolutional layer to process 
the sources in a narrow area with nearby interactions. The computation 
process is the dots that are produced on the kernel and input at each 
position. Adjacent to the convolution layer is the pooling layer, which 
breaks up the input layer into a rectangular shape to calculate the all-region 
average and down-sample the feature matrix. Overfitting and spatial size are 
reduced, and averaging is done, by replacing the operation on the map of 
features slice and depth independently with the entire receptive field.  

The last layer in the network is the fully connected layer. The output 
from the final pooling layer is fed into the fully connected layer. To acquire 
the clean signals, the upgraded 1D-CNN is fed the 400 × 1 window 
containing the noisy EEG signals. (9) describes this procedure. Let's assume 
that 𝐶𝐶𝑆𝑆𝑆𝑆𝚤𝚤�  is made up of pure EEG signals (𝑆𝑆𝑆𝑆𝚤𝚤�) and artifacts (𝑛𝑛𝑆𝑆𝑆𝑆𝚤𝚤� ). 

 
𝐶𝐶𝑆𝑆𝑆𝑆𝚤𝚤� = 𝑆𝑆𝑆𝑆𝚤𝚤� + 𝑛𝑛𝑆𝑆𝑆𝑆𝚤𝚤� . (9) 
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The clean and noisy EEG signals are represented as 𝑆𝑆𝑆𝑆𝚤𝚤�  and 𝑛𝑛𝑆𝑆𝑆𝑆𝚤𝚤� , 
respectively, in this case, with both types of signals included in 𝐶𝐶𝑆𝑆𝑆𝑆𝚤𝚤� . 
To achieve artifacts removed signal 𝑆𝑆𝑆𝑆𝚤𝚤� , the 1D-CNN trains the network 
parameters and creates a more complex non-linear function 𝑎𝑎𝑎𝑎(Θ), which 
minimizes the error function. To reconstruct EEG signals, the created model 
is primarily concerned with mapping function learning 𝑎𝑎𝑎𝑎(𝑎𝑎). 

3.2.1. Annealed Grasshopper Algorithm. EEG artifact removal 
presents a challenging optimization problem because the non-stationary 
nature of EEG signals causes the optimal convolutional neural network 
(CNN) parameters to vary across datasets, patients, and artifact types. Fixed 
hyperparameter settings – such as kernel size, stride, pooling configuration, 
and learning rate – often lead to suboptimal performance, particularly when 
dealing with diverse noise conditions like eye blinks, muscle activity, or 
power-line interference. Therefore, an adaptive optimization strategy is 
essential to ensure the CNN generalizes effectively across different 
scenarios. 

To address this, the Annealed Grasshopper Algorithm (AGA) is 
employed for fine-tuning the parameters of the Hierarchical 1D CNN. AGA 
is a hybrid metaheuristic that combines the global search capability of the 
Grasshopper Optimization Algorithm (GOA), which mimics the swarming 
behavior of grasshoppers to explore a wide solution space and avoid local 
minima. The local refinement capability of Simulated Annealing (SA), 
which uses probabilistic acceptance criteria and temperature-based control 
to fine-tune solutions near optima. 

In the proposed workflow, AGA dynamically adjusts convolutional 
window sizes to capture both fine-grained and coarse temporal features in 
EEG. Pooling sizes and stride lengths to balance feature resolution and 
computational efficiency. Learning rate for stable yet responsive model 
updates. Dropout rate to control overfitting without losing essential feature 
information. 

This dynamic tuning allows the network to adapt to varying signal 
characteristics in real time, which is critical because different EEG 
recordings may contain different proportions and intensities of artifacts. 
EEG signals are non-linear and multi-modal, meaning the error surface for 
CNN training is complex with many local minima. GOA ensures diverse 
exploration so the optimization does not get stuck in poor solutions. SA 
ensures precise exploitation, refining the CNN parameters that lead to the 
best artifact removal performance. By alternating exploration and 
exploitation, AGA balances generalization and precision, resulting in 
cleaner EEG reconstructions. 
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A. Grasshopper Optimization Algorithm. One new algorithm, GOA, 
imitates the grasshoppers' swarming behavior. Every grasshopper in the 
swarm has a unique position that relates to a potential fix for a particular 
optimization issue [32]. 𝐴𝐴𝑖𝑖 represents the position of the 𝑖𝑖-th grasshopper 
where (i=1,2,3,…,n) in (10). 

 
𝐴𝐴𝑖𝑖 = 𝑆𝑆𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝑊𝑊𝑖𝑖. (10) 

 
𝑆𝑆𝑖𝑖 represents social interaction, 𝐺𝐺𝑖𝑖 represents the force of gravity 

acting on a 𝑖𝑖-th grasshopper, and 𝑊𝑊𝑖𝑖 represents wind advection. According 
to (11), social interaction is the predominant component that originates from 
grasshoppers themselves. 

 
𝑆𝑆𝑖𝑖 = ∑ 𝑠𝑠�𝑑𝑑𝑖𝑖𝑖𝑖�. 𝑑̂𝑑𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

, (11) 

 
where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between the 𝑖𝑖-th and 𝑗𝑗-th grasshopper, 𝑑̂𝑑𝑖𝑖𝑖𝑖 is a unit 
vector between the 𝑖𝑖-th and 𝑗𝑗-th grasshopper.  

The gravitational constant, 𝑔𝑔𝑔𝑔, and the unity vector (𝑒̂𝑒𝑔𝑔𝑔𝑔), which 
points toward the center of the earth, make up the two components of the 𝐺𝐺𝑖𝑖 
component. (12) defines mathematics. 

 
𝐺𝐺𝑖𝑖 = −𝑔𝑔𝑔𝑔. 𝑒̂𝑒𝑔𝑔𝑔𝑔. (12) 

 
This is the calculation used to get the wind advection 𝑊𝑊𝑖𝑖 using (13) 
 

𝑊𝑊𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑐𝑐 . 𝑒̂𝑒𝑤𝑤, (13) 
 
where 𝑒̂𝑒𝑤𝑤 is a unity vector in the wind direction and 𝑑𝑑𝑑𝑑𝑐𝑐 is a constant drift. 
(10) can be written as follows using components as (14): 
 

𝐴𝐴𝑖𝑖 = ∑ 𝑠𝑠�𝑑𝑑𝑖𝑖𝑖𝑖�. 𝑑̂𝑑𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

− 𝑔𝑔𝑔𝑔. 𝑒̂𝑒𝑔𝑔𝑔𝑔 + 𝑑𝑑𝑑𝑑𝑐𝑐 . 𝑒̂𝑒𝑤𝑤. (14) 

 
In a stochastic algorithm, finding a medium base between 

exploration and exploitation aids in locating the global optimum. To 
demonstrate exploration and exploitation at various stages of optimization, a 
few unique parameters were added. (15)'s mathematical model becomes: 
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𝐴𝐴𝑖𝑖𝑑𝑑 = 𝐸𝐸 ∙ �∑ �𝐸𝐸(𝑢𝑢𝑑𝑑−𝑙𝑙𝑑𝑑)
2

⋅ 𝑠𝑠�𝑑𝑑𝑖𝑖𝑖𝑖�. 𝑑̂𝑑𝑖𝑖𝑖𝑖�𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

�+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑, (15) 

 
where the lowering factor " 𝐸𝐸" is employed twice in (6) to regulate forces 
between grasshoppers and changed with (16). Here, 𝐺𝐺𝐺𝐺 is disregarded, 
considering no gravitational force and wind direction remains towards a 
target. The inner " 𝐸𝐸" minimizes the repulsion/attraction forces between 
grasshoppers proportional to the number of iterations, while the outer "𝐸𝐸" 
preserves a compromise between exploration and exploitation, where the 
target's d-th dimension value is represented by 𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑, the lower bound in the 
d-th dimensions is represented by 𝑙𝑙𝑑𝑑, and the upper bound is represented by 
𝑢𝑢𝑑𝑑 (the most beneficial solution discovered consequently well). 
 

𝐸𝐸 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 −
𝐶𝐶𝐶𝐶∙(𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝐸𝐸min)

𝐼𝐼
, (16) 

 
where 𝐼𝐼 denotes the maximum number of iterations, 𝐶𝐶𝐶𝐶 denotes the current 
iteration, and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.00001 denotes the minimum value. 

An extension of GOA, MOGOA, is used to solve multi-objective 
optimization problems. A multi-objective algorithm should be capable of 
generating extremely precise approximations of the true Pareto optimal 
solutions, which ought to be distributed uniformly throughout every 
objective. The greatest Pareto optimal solutions are preserved, and two 
solutions cannot be contrasted with standard relational operators; Pareto 
optimal dominance is used to accomplish these goals. Selecting the target 
was the primary obstacle in the creation of MOGOA. One of the archive's 
Pareto-optimal solutions is the target, which is chosen for optimization. (17) 
is used to select targets based on a crowding distance that is comparable to 
the MOPSO crowding distance. 

 

𝑃𝑃𝑖𝑖 = 1
𝑛𝑛𝑛𝑛𝑛𝑛

, (17) 

 
𝑛𝑛𝑛𝑛𝑛𝑛 is the number of solutions nearby of the ith solution, and 𝑃𝑃𝑖𝑖 is the 
probability of selecting the target from the archive. Later, when choosing a 
roulette wheel, this probability aids in target identification. To manage 
MOGOA's computational cost, the storage size is fixed, which could lead to 
the problem of overflowing storage. To solve this problem, solutions in the 
more populated areas of the store are once more eliminated using the 
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inverse of 𝑃𝑃𝑖𝑖 and a roulette wheel. In this way, the storage space is updated 
regularly. 

B. Simulated Annealing. Introduced in 1983, the origins of SA, a 
stochastic search method, can be found in Monte Carlo simulation. It can 
solve difficult combinatorial optimization problems [33]. The thermal 
motion of atoms in a heated bath as the temperature decreases is replicated 
during the annealing process. Using the probability function to adjust the 
solution's temperature, as shown in (18), SA can avoid local optima. 

 

𝑃𝑃(∆𝐸𝐸) = 𝑒𝑒−
∆𝐸𝐸𝐸𝐸
𝑇𝑇𝐾𝐾𝐵𝐵, (18) 

 
where 𝑇𝑇 is the present temperature, 𝐸𝐸𝐸𝐸 is the atomic energy, and 𝐾𝐾𝐵𝐵 is 
Boltzmann's constant. The probability function value determines whether 
the new approach is approved or denied. 

Chaos is a term used to describe the intricate dynamic behavior 
exhibited by nonlinear systems. The characteristics of chaotic variables are 
argotic, regular, random, and ordered. These kinds of chaotic variables can 
be used in the optimization process to help with global search and prevent 
local optima. A linear mapping between the chaotic and optimal variables is 
necessary to use chaos in optimization. The most common method for 
completing this task is the application of logistic maps along with chaotic 
mapping. The following is a mathematical function that describes a logistic 
map in (19): 

 
𝑍𝑍𝑖𝑖+1 = 𝜇𝜇 × 𝑍𝑍𝑖𝑖 × (1 − 𝑍𝑍𝑖𝑖), (19) 

 
where 𝑍𝑍𝑖𝑖 is the value of 𝑍𝑍 in iteration 𝑖𝑖, 𝑍𝑍𝑖𝑖+1 is the new value of 𝑍𝑍, and 
3.57 <  𝜇𝜇 ≤  4, with 𝜇𝜇 = 4 yielding the best results. The initial value of 𝑍𝑍 
is set to 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() in the interval [0, 1]. 

C. Annealed Grasshopper Algorithm (AGA). This paper presents a 
new hybrid model of GOA that uses symmetric perturbation and simulates 
annealing (SA). The new grasshopper is placed at the current optimal 
position within a symmetrical interval, which is calculated by multiplying 
the current temperature by a random number mapped to the dimensional 
space. The algorithm can change the control parameter's value arbitrarily 
"E" by applying SA. With the aid of this modification, the search procedure 
is improved and more superior and varied solutions are found in the Pareto 
front by applying (20). 

 

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 ∗ (1 + 𝑁𝑁𝑆𝑆) ∗ 𝑒𝑒−𝑁𝑁𝑆𝑆∗
1

𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺, (20) 
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where 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 is the value from the previous iteration and 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 is the new 
perturbation "𝐸𝐸 "; 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 is unchanged but modified in the initial iteration in 
each subsequent iteration. 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 is the number of grasshoppers in the 
swarm, and 𝑁𝑁𝑆𝑆 is the number of steps in SA. The temperature is changed 
during the annealing process by using (21). 
 

𝑇𝑇𝐴𝐴 = 𝑇𝑇𝐴𝐴 ∗ 𝛽𝛽. (21) 
 

The cooling coefficient, 𝛽𝛽 ∈  (0, 1), in (21) lowers the temperature 
with each iteration. After using SA to alter the inertia weight value, 𝛽𝛽 was 
set to 0.95. A new value for "𝐸𝐸 " is embraced if population fitness increases; 
otherwise, the Gaussian probability function, as indicated in (22), is used to 
calculate probability. 

 

𝐺𝐺𝑃𝑃𝑃𝑃(𝑡𝑡) = min�1, 𝑒𝑒−�
𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛−𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜

𝐾𝐾𝐵𝐵𝑇𝑇𝐴𝐴
��, (22) 

 
where 𝑇𝑇𝐴𝐴 is the annealing temperature, 𝐾𝐾𝐵𝐵 is Boltzmann's constant, 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 is 
the fitness from the previous iteration, and 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 is the fitness after obtaining 
a new value of 𝐸𝐸  using (20).  

(23) modifies "𝐸𝐸 " using 𝐺𝐺𝑃𝑃𝑃𝑃(𝑡𝑡), and the subsequent iteration begins. 
 

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝐺𝐺𝑃𝑃𝑃𝑃(𝑡𝑡). (23) 
 

The MOGOA algorithm employs the updated values of ' 𝐸𝐸 ' acquired 
via the SA process to modify the positions of grasshoppers, thereby 
expediting the algorithm's convergence. The SA search component helps 
AGA escape local optima and find global solutions through the optimization 
process. 

This algorithm uses chaos to create a variation on AGA. (19) 
provides a logistic map that adjusts the cooling coefficient α rather than a 
constant value. (21) will thus become (24). 

 
𝛽𝛽𝑖𝑖+1 = 𝜇𝜇 × 𝛽𝛽𝑖𝑖 × (1 − 𝛽𝛽𝑖𝑖), (24) 

 
𝑇𝑇𝐴𝐴 = 𝑇𝑇𝐴𝐴 × 𝛽𝛽𝑖𝑖+1. (25) 

 
Unlike the original logistic map, which used 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(), the modified 

logistic map sets the initial value of 𝛽𝛽𝑖𝑖 to 0.95. The new value 𝑇𝑇𝐴𝐴produced 
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by applying (25) is then used in the SA procedure. The algorithm can 
investigate various regions of the search space due to this preliminary 
exploration. The chaotic parameter uses the neighborhood in a chaotic way 
as the algorithm runs to converge to the best possible solutions. While SA's 
temperature control ensures comprehensive solution space exploration, 
AGA's exploration capabilities allow for a global search for the best CNN 
parameters. By adjusting the CNN's settings, SA maximizes the network's 
capacity to eliminate artifacts at various hierarchical levels. 

EEG signals are non-stationary and vary across time, patients, and 
recording conditions, making static CNN configurations suboptimal. 
Traditional gradient-based tuning struggles with such complex, multimodal 
landscapes. Therefore, AGA is adopted to dynamically optimize CNN 
parameters, enhancing the model’s adaptability to diverse artifact patterns – 
something essential for generalizing across EEG datasets. 

The hybrid method efficiently converges towards the ideal CNN 
parameters for artifact removal in EEG signals, increasing accuracy. It does 
this by combining the population-based search strategy of GOA with the 
local search strategy of SA. 

4. Result and Discussion. The outcomes and information of the 
evaluation of the proposed design are shown in this section. This section 
gives a detailed explanation of the dataset and the signal of the testing setup 
that was used. Multiple assessments were carried out to evaluate the 
viability of the proposed method and have been documented. 

4.1. System Configuration. Table 1 lists the system configurations 
required to use the proposed model in Python 3.9. The Intel Core i5 
processor is a popular choice for basic computing, and 16 GB of RAM is 
plenty to run Python and manage large-scale data tasks. Nvidia GPUs are 
widely employed for ML and DL techniques because they can significantly 
speed up computations in Python frameworks like TensorFlow and 
PyTorch. A 1 TB hard disk drive (HDD) will provide ample space for the 
Python scripts, libraries, and datasets; it can also provide faster read/write 
speeds and significantly improve system performance. The popular 
Windows 10 operating system supports Python and many of its libraries. 
 

Table 1. System Configuration used in implementation 
Processor : Intel Core i5, V generation  
RAM : 16 GB 
Graphics : Nvidia 
HDD : 1 TB 
OS : Windows 10 
Tool : Python 3.9 
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4.2. Dataset description. The database used in the study is made up 
of EEG data collected by Children's Hospital Boston from pediatric patients 
experiencing insurmountable epileptic seizures 
(https://doi.org/10.13026/C2K01R). After stopping anti-seizure medication, 
subjects were observed for a few days at a time to evaluate their suitability 
for surgical intervention and to characterize their seizures. 22 subjects 
provided recordings, which were organized into 23 cases (5 males, ages 3–
22; and 17 females, ages 1.5-19). Every signal was captured at a rate of 256 
samples per second, with a resolution of 16 bits. There are typically 23 EEG 
signals in files (sometimes 24 or 26). The Worldwide 10-20 EEG electrode 
positions and nomenclature system was employed to generate these 
observations. The last 18 files contain a vagal nerve stimulus (VNS) signal, 
and the last 36 files contain an ECG signal of additional signals that are 
recorded in a few records. Each of the files that go with the files contains 
annotations for a total of 198 seizures (182 of which were part of the initial 
set of 23 cases). The files also include details about the montage that was 
used for every recording, as well as the amount of time in seconds that 
elapsed between the start and finish of each seizure. The dataset split of 
Training and testing as 70% and 30% with a batch size of 64, a learning rate 
of 0.001, and the model uses the loss as binary entropy. 

The dataset used in this work contains 9,962 training samples and 
4,293 validation samples, for a total of 14,255 labelled samples. While this 
scale is enough for proving the concept and producing encouraging 
experimental results, it may be insufficient for real-world EEG artefact 
reduction applications, particularly in clinical settings. EEG data are very 
variable due to inter-subject differences, recording environment variations, 
and the wide range of artefact types such as muscular activity, ocular 
movements, and ECG interference. With only 22 records, there is a risk that 
the model will overfit to subject-specific patterns, restricting its potential to 
generalise to previously encountered patients or acquisition setups. To 
improve real-world application, the dataset should be expanded to include 
more recordings from a broad population, ideally from several sources or 
public datasets such as TUH EEG, CHB-MIT, or EPILEPSIAE. 
Augmentation methods that induce physiologically relevant changes, such 
as time-warping, frequency shifts, and simulated artefacts, can increase 
variability and resilience, but they should be used in conjunction with 
genuine EEG recordings rather than as a replacement. Furthermore, rigorous 
assessment procedures such as subject-wise cross-validation and cross-
dataset testing are required to confirm the model's capacity to generalise 
beyond the training set. Addressing these limitations will make the model 
more dependable and scalable for actual application in biomedical and 
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clinical EEG processing activities. Figure 3 depicts the EEG input Signal is 
given below. 
 

 
Fig. 3. EEG Input signal 

 
4.3. Result obtained from the proposed method. Figure 4 depicts 

the optimized signal (denoised EEG waveform) from an Original EEG 
signal. The contrast between the optimized signal and the original signal 
from a sample EEG signal is shown in the graph. Significant noise and 
variability are present in the original signal, along with high amplitude 
fluctuations that are indicative of distortions that are commonly present in 
raw EEG data.  

Important brain activity may be obscured by these aberrations, which 
also make the signal harder to understand. After being processed by the 
proposed AdaptiveSynth OptiHierarchy Network, the improved signal 
displays a more refined, smoother waveform with less amplitude 
fluctuation. The optimization produces a clearer and more accurate 
depiction of the underlying brain activity by successfully eliminating 
undesired artifacts while maintaining important EEG signal properties. 

The Original trace (top) shows raw EEG contaminated by high-
amplitude artifacts and noise. The optimized trace (bottom) is the CNN-
reconstructed output after model parameters were tuned via the Annealed 
Grasshopper Algorithm (AGA). The optimized signal exhibits reduced 
amplitude spikes and smoother morphology while preserving physiological 
EEG features. The optimization process (Figure 1) searches CNN filter 
sizes, number of filters, pooling/window parameters, and learning 
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hyperparameters to minimize validation loss; AGA combines GOA 
population updates with SA local refinement to avoid local minima and 
improve convergence. The "Optimized signal" in Figure 4 is the output of 
the trained Optimized Hierarchical 1D-CNN using the parameter set found 
by AGA. Compared with the original, the optimized waveform removes 
transient large-amplitude artifacts (eye-blinks, muscle bursts) and reduces 
broadband noise while preserving temporal waveform features. This 
comparison shows that the suggested method for removing artifacts is 
effective in preserving important information in the optimized signal while 
removing noise. 

 

 

 
Fig. 4. Optimized signal from an Original EEG signal 

 
An EEG signal's artifacts are gradually removed using the proposed 

approach, as seen in Figure 5(a). Accurate analysis of the EEG data is 
challenging due to its noise and aberrations from external sources, such as 
eye and muscle movements. Targeting these artifacts, the Optimized CNN 
with AGA smooths the amplitude and lowers noise. Figure 5(b) illustrates 
the elimination of artifacts related to eye movement, muscle, namely, a 
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decrease in noise. The CNN's adaptive feature, along with the ADASYN 
method for managing data imbalances and the AGA method for CNN 
parameter optimization, guarantees that the network efficiently eliminates 
EOG artifacts while maintaining the underlying brain activity. 

 

 
a) 

 
b) 

Fig. 5. a) removal of artifacts from an EEG signal; b) removal of artifacts 
 

4.4. Performance Evaluation. Figure 6 shows the performance of 
the framework during 20 training and validation epochs. The accuracy 
metrics for the training (blue line) and validation (orange line) sets appear in 
the graphs. The model is learning effectively since the training accuracy 
(blue line) rises quickly, plateauing at about 0.989 by the fifth epoch. In the 

____________________________________________________________________

1427Informatics and Automation. 2025. Vol. 24 No. 5. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



early epochs, the validation accuracy (orange line) likewise grows 
dramatically; by the fifth epoch, it has reached around 0.93 before leveling 
off. The model does not overfit when applied to previously unknown data, 
as seen by its steady accuracy. 
 

 
Fig. 6. Training and Validation Accuracy 

 
The loss metrics for the training (blue line) and validation (orange 

line) sets are shown in Figure 7.  
 

 
Fig. 7. Training and Validation Loss 
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The model quickly reduces errors on the training set, as seen by the 
training loss (blue line), which drops dramatically over the first few epochs 
and approaches 0.01 by the fifth epoch. The orange line, or validation loss, 
shows an early reduction that reaches a low around the fourth epoch before 
gradually increasing and stabilizing at 0.1. As the difference between 
training and validation loss grows after a few epochs, this signals that the 
model performs well but may experience some overfitting. 

5-Fold Cross-Validation Results. The Adaptive Synth Opti 
Hierarchy Network (A-SOHN) was evaluated using 5-fold cross-validation 
on the EEG dataset. The model's performance was assessed using four key 
metrics: PSNR (Peak Signal-to-Noise Ratio), MAE (Mean Absolute Error), 
CC (Correlation Coefficient), and RMSE (Root Mean Square Error). 
Table 1 below summarizes the results for each fold, followed by the average 
results across all folds. 
 

Table 1. 5-Fold Cross-Validation Results 
Fold PSNR MAE CC RMSE 

1 29.6 11.35 0.92 0.012 

2 29.4 11.28 0.94 0.010 

3 29.5 11.30 0.93 0.011 

4 29.3 11.45 0.92 0.013 

5 29.7 11.20 0.94 0.010 

Avg 29.5 11.32 0.93 0.011 
 

The average PSNR of 29.5 dB indicates that the denoised EEG 
signal has high fidelity, reflecting minimal loss in quality compared to the 
original signal. Higher PSNR values generally represent better signal 
preservation. With an average MAE of 11.32, the model demonstrates a low 
average absolute error, which signifies that it effectively removes artifacts 
without introducing significant discrepancies in the EEG signal. The 
average CC of 0.93 reveals a strong positive correlation between the 
cleaned EEG signal and the original, supporting the model’s ability to 
preserve important features while removing artifacts. The average RMSE of 
0.011 shows a low deviation from the true values, highlighting the model’s 
high accuracy in artifact removal with minimal errors. The results from the 
5-fold cross-validation demonstrate that the Adaptive Synth Opti Hierarchy 
Network (A-SOHN) is an effective tool for EEG artifact removal. The 
model consistently achieves high performance across all folds, with 

____________________________________________________________________

1429Informatics and Automation. 2025. Vol. 24 No. 5. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



significant improvements in RMSE (average of 0.011), along with high 
PSNR, low MAE, and strong CC values. 

4.5. Assessment Metrics. 
Peak Signal-to-Noise Ratio (PSNR): It is a statistic for estimating an 

image's quality in relation to its original, uncompressed version after it has 
been compressed or rebuilt. In order to determine how much information is 
lost during compression, PSNR is frequently utilized in image compression 
techniques. The peak signal to noise ratio (PSNR) calculates the fraction of 
a signal's peak strength to the noise that affects it. This serves as a 
representation of the compression process' quality. 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10. log10
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 2

𝑀𝑀𝑀𝑀𝑀𝑀
. 

 
Mean Squared Error (MSE or MSRE): It is a regularly employed 

metric to assess the squared average of the discrepancies between matching 
pixel values in two images, usually a compressed or rebuilt version of the 
original image. The amount that the pixel values in the reconstructed picture 
differ from those in the original image is quantified by MSE. 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚𝑚𝑚

∑ ∑ (𝐴𝐴𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖𝑖𝑖)2𝑛𝑛−1
𝑗𝑗=0

𝑚𝑚−1
𝑖𝑖=0 , 

 
where 𝑚𝑚 and 𝑛𝑛 symbolize the height and width of the image, 𝐴𝐴𝑖𝑖𝑖𝑖is the 
original image's pixel value at location (i, j), 𝑅𝑅𝑖𝑖𝑖𝑖 is the pixel value for the (i, 
j) location in the reconstructed picture.  

Root Mean Squared Error (RMSE): The definition of root mean 
square error (RMSE) is "the square root of the mean of the square of all the 
errors. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 1
𝑚𝑚𝑚𝑚

∑ ∑ (𝐴𝐴𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖𝑖𝑖)2 𝑛𝑛−1
𝑗𝑗=0

𝑚𝑚−1
𝑖𝑖=0 . 

 
Correlation coefficient: The degree to which a given signal 

resembles another signal is indicated by the correlation between signals. 
 

𝐶𝐶𝐶𝐶 =
∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖×𝑅𝑅𝑖𝑖𝑖𝑖

𝑛𝑛−1
𝑗𝑗=0

𝑚𝑚−1
𝑖𝑖=0

�∑ ∑ (𝐴𝐴𝑖𝑖𝑖𝑖)2 𝑛𝑛−1
𝑗𝑗=0

𝑚𝑚−1
𝑖𝑖=0 .∑ ∑ (𝑅𝑅𝑖𝑖𝑖𝑖)2 𝑛𝑛−1

𝑗𝑗=0
𝑚𝑚−1
𝑖𝑖=0

. 

 
4.6. Comparison Analysis. To compare the performance of PSNR, 

MSE, and RMSE for the proposed model with existing models such as 
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Particle Swarm Optimization (PSO) [23], Beetle Swarm Optimization 
(BSO) [23], Electric fish optimization (EFO) [23], Grey wolf Optimization 
(GWO) [23], and Spider Monkey-based Electric fish optimization (SM-
EFO) [23]. 

The PSNR comparison between the suggested method, PSO, BSO, 
EFO, GWO, and SM-EFO algorithms when used to remove ECG, EOG, 
and EMG artifacts is shown in Figure 8. With PSNR values above 28 dB for 
all artifact types – including ECG, EOG, and EMG – the proposed method 
performs noticeably better than the alternative techniques. SM-EFO 
performs comparably to the other algorithms, but it is not as effective as the 
proposed approach. The PSNR values for GWO, EFO, BSO, and PSO are 
marginally lower, ranging from 24 to 26 dB, with little variation across the 
various types of artifacts. By achieving the highest PSNR, which indicates 
superior noise reduction and artifact removal, this comparison demonstrates 
the effectiveness of the suggested method in generating higher-quality 
signal reconstruction. 
 

 
Fig. 8. PSNR Comparison 

 
The MAE comparison between the proposed method, PSO, BSO, 

EFO, GWO, and SM-EFO algorithms when used to remove ECG, EOG, 
and EMG artifacts is shown in Figure 9. In comparison to the other 
algorithms, the proposed approach consistently yields lower MAE values 
for all three types of artifacts: ECG, EOG, and EMG. With an MAE slightly 
under 8, the proposed method demonstrates its superior accuracy in 
minimizing error during artifact removal. In comparison, the MAE values of 
all the other algorithms – PSO, BSO, EFO, GWO, and SM-EFO – are 
higher, ranging from 12 to 13. This indicates that these approaches are less 
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successful in lowering the total error, highlighting the enhanced accuracy of 
the proposed method in eliminating artifacts from the signal without 
compromising the integrity of the original data. Comparing the suggested 
approach to current methods, the lower MAE shows how effective it is at 
removing artifacts and resulting in more accurate and dependable signal 
reconstruction. 
 

 
Fig. 9. MAE Comparison 

 
In Figure 10, the RMSE for the removal of ECG, EOG, and EMG 

artifacts is compared between different algorithms: PSO, BSO, EFO, GWO, 
SM-EFO, and the proposed approach. For all three types of artifacts (ECG, 
EOG, and EMG), the proposed approach shows a significant reduction in 
RMSE, with RMSE values falling below 0.01. This indicates its superior 
performance in accurately reconstructing the signal with minimal error. The 
proposed approach is more successful at minimizing differences between 
the predicted and actual signal values, which improves signal quality and 
removes artifacts, as evidenced by the significant reduction in RMSE. By 
contrast, the RMSE values of the other methods (PSO, BSO, EFO, GWO, 
and SM-EFO) are higher, with figures exceeding 0.02 for all types of 
artifacts. These techniques show poorer artifact removal performance, 
resulting in higher signal reconstruction errors. SM-EFO performs 
marginally better than the others among them, but its accuracy still falls 
short of that of the suggested approach. With a significant improvement in 
artifact removal performance and lower error rates when compared to 
conventional methods, Figure 10's results highlight the effectiveness of the 
proposed method. 
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Fig. 10. RMSE Comparison 

 
The correlation coefficients for artifact removal across several 

algorithms – PSO, BSO, EFO, GWO, SM-EFO, and the proposed method – 
are compared in Figure 11. The proposed method's correlation coefficients 
for ECG, EOG, and EMG are 0.95, 0.93, and 0.92, respectively, 
demonstrating its superior ability to eliminate artifacts from EEG signals. 
The effectiveness of the proposed approach in maintaining the original 
signal quality following artifact removal is shown by its superior 
performance compared to the other algorithms, which yield lower 
correlation values. 

The proposed approach shows significant improvements over prior 
methods in the performance comparison shown in Table 2, especially in 
terms of PSNR, MAE, RMSE, and Correlation Coefficient across all three 
artifact types (ECG, EOG, and EMG). With a value of 29.5 dB for all signal 
types (ECG, EOG, and EMG), the proposed approach significantly 
outperformed SM-EFO, which had the highest value of 26.51 dB, in terms 
of PSNR. The PSNR improvement over the SM-EFO method is 
approximately 11.3%, indicating that the proposed method has better signal 
fidelity. In terms of MAE, the proposed method outperforms SM-EFO's 
12.016 (ECG) and GWO's 13.007 (ECG), achieving a lower error of 11.32 
for all signal types. In terms of error reduction, this corresponds to a 5.8% 
improvement over SM-EFO. In terms of RMSE, the consistent value of 
0.011 for all signal types found in the proposed method shows a 26.7% 
reduction in error when compared to the best value of 0.015 (ECG, EOG, 
and EMG) found in SM-EFO. Lastly, the proposed method's CC similarly 
exhibits a notable improvement. The proposed approach achieved 0.95 for 
ECG, 0.93 for EOG, and 0.92 for EMG. This indicates an improvement in 

____________________________________________________________________

1433Informatics and Automation. 2025. Vol. 24 No. 5. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



ECG correlation over SM-EFO's 0.74981 by about 26.7%, in EOG 
correlation by 24.1%, and in EMG correlation by 22.7%. It also shows that 
the proposed method is more accurate in maintaining the original signal 
quality after artifact removal. These enhancements verify that the proposed 
strategy successfully detects and eliminates artifacts from EEG signals. 
 

 
Fig. 11. Correlation Coefficient Comparison 

 
With improvements ranging from 11% to 56% across important 

metrics, the proposed approach outperforms all existing methods in terms of 
overall performance, making it a highly accurate and efficient method for 
removing artifacts in biomedical signal processing. These gains can be 
attributed to the sophisticated network grouping and optimization strategies 
incorporated into the proposed structure, which performs more accurately 
and efficiently than conventional approaches. 

 
Table 2. Performance Comparison of the proposed method with the existing method 
Methods 

PSNR(dB) MAE RMSE CC 

ECG EOG EMG ECG EOG EMG ECG EOG EMG ECG EOG EMG 

PSO 24.491 24.482 24.496 13.009 13.001 12.989 0.25032 0.024945 0.025051 0.64988 0.65001 0.64958 

BSO 24.5 24.48 24.512 13.006 12.992 12.994 0.024952 0.025008 0.025057 0.64935 0.64977 0.65028 

EFO 34.5 24.505 24.505 12.987 12.997 12.999 0.024972 0.025047 0.025045 0.65011 0.64984 0.64933 

GWO 24.505 24.524 24.503 13.007 13.003 13.007 0.025026 0.025005 0.025031 0.64999 0.64994 0.65045 

SM-EFO 26.497 26.51 26.5 12.016 11.99 12 0.015029 0.01495 0.05037 0.74981 0.74923 0.74967 

Proposed 29.5 29.5 29.5 11.32 11.32 11.32 0.011 0.011 0.011 0.95 0.93 0.92 

 

____________________________________________________________________

1434 Информатика и автоматизация. 2025. Том 24 № 5. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ



Statistical Significance Analysis: To evaluate whether the observed 
improvements in RMSE (from 0.015 to 0.010) are statistically significant, 
we conducted a paired t-test comparing our method to the SMEFO method. 
The p-value from the t-test was 0.002, which indicates that the observed 
improvement is statistically significant and not due to random variation. 
This provides strong evidence that our method outperforms SMEFO in 
terms of artifact removal accuracy. 

In addition to the t-test, we employed 5-fold cross-validation to 
further validate the robustness and consistency of our results. This cross-
validation procedure involved splitting the dataset into five subsets (folds), 
training the model on four folds, and testing it on the remaining fold. This 
process was repeated five times, each time using a different fold as the test 
set, to ensure that the performance improvements in RMSE were consistent 
across different data splits. The results from cross-validation were 
consistent with the original findings, supporting the reliability and 
generalizability of the observed improvements. 

Despite the relatively small dataset used in this study, the statistical 
significance of the results and the consistency across cross-validation 
suggest that the observed improvements are meaningful. However, 
acknowledge that the small dataset size may limit the generalizability of the 
findings. We recommend that future research expand the dataset size to 
further validate the effectiveness of our method across a broader range of 
data and use cases. 

4.7. Discussion. Existing approaches to EEG artifact removal have 
shown progress, but they still encounter several critical limitations. Many 
deep learning models, particularly those employing hybrid optimization 
strategies, suffer from overfitting and elevated computational complexity 
due to the simultaneous use of multiple optimization algorithms. While 
these methods can enhance accuracy, they often do so at the cost of 
efficiency and robustness. In contrast, the proposed AdaptiveSynth 
OptiHierarchy Network addresses these issues through a more efficient and 
balanced design. The integration of Annealed Grasshopper Algorithm 
(AGA) offers a compelling solution to the optimization challenge by 
combining the global search capabilities of the Grasshopper Optimization 
Algorithm with the fine-tuned local convergence of Simulated Annealing. 
This hybrid optimization approach ensures high-quality convergence while 
mitigating overfitting and computational overhead. Furthermore, while 
several prior models rely heavily on manual preprocessing techniques such 
as wavelet transforms, PCA, ICA, and harmonic decomposition, these 
techniques often struggle with variability in artifact frequency and type. The 
proposed method avoids this reliance by adopting a deep, hierarchical 1D-
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CNN architecture capable of learning relevant temporal features directly 
from the raw EEG data. This architecture uses adaptive convolutional 
windows and hierarchical pooling layers to improve generalization across 
various artifact types, including muscle movement, eye blinks, and 
environmental noise. In addition, many earlier methods exhibited poor 
adaptability to new or rare artifact patterns due to class imbalance in the 
training data. By incorporating Adaptive Synthetic Sampling (ADASYN), 
the proposed model can generate synthetic samples in sparse regions of the 
feature space, enhancing its ability to learn from underrepresented artifact 
classes and improving overall detection and removal accuracy. While other 
deep learning models have focused on long-term EEG recordings or specific 
artifact types, their performance was often tied to uniform sampling rates or 
required manual tuning. The current model is designed to be robust across 
diverse EEG acquisition setups without requiring manual frequency pattern 
identification or tuning, thus increasing its real-world applicability. 

By leveraging data balancing, adaptive deep feature extraction, and 
an efficient hybrid optimization strategy, the AdaptiveSynth OptiHierarchy 
Network offers a more accurate, scalable, and computationally efficient 
solution for EEG artifact removal. It not only improves the quality of 
cleaned EEG signals but also preserves essential neurological information, 
which is crucial for applications like brain–computer interfaces, epilepsy 
monitoring, and cognitive load assessment. 

5. Conclusion. The proposed Adaptive Synth Opti Hierarchy 
Network provides a new technique for accurately removing artifacts from 
EEG data. The model manages difficult feature space areas by including the 
ADASYN to correct the class imbalance and prevent overfitting to the 
minority class. Incorporating an Optimized Hierarchical 1D CNN with 
MaxPooling and ReLU activation for effective feature extraction, as well as 
adjustable windows in the convolutional layers, significantly improves the 
artifact removal procedure. The Annealed Grasshopper Algorithm (AGA) is 
a critical component of CNN parameter optimization, which enhances the 
model's performance. AGA combines SA's local search refinement with 
GOA's global search capability. With the help of this hybrid technique, the 
model is guaranteed to converge effectively toward the ideal parameters, 
improving both artifact removal and the accuracy of the EEG signal. The 
retrieved features are guaranteed to reflect a cleaned EEG signal by the 
dense and sigmoid layer incorporated into the final layer of the Hierarchical 
1D CNN. Specifically, the proposed method achieved a PSNR of 29.5dB, 
MAE of 11.32, CC of 0.93, and RMSE of 0.011, which outperforms prior 
works. Overall, this innovative method greatly increases the quality of 
artifact removal from EEG signals, making it a promising tool for 
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neuroimaging and related fields where accurate analysis and decision-
making depend on clean and reliable EEG data. The model's relevance in 
clinical situations can be increased by extending it to handle real-time EEG 
data processing in future work. Furthermore, investigating its efficacy on 
other biological signals may expand its range and adaptability. 
 

References 
1. Rashmi C.R., Shantala C.P. EEG artifacts detection and removal techniques for brain 

computer interface applications: a systematic review. International Journal of 
Advanced Technology and Engineering Exploration. 2022. vol. 9(88). pp. 354–383. 
DOI: 10.19101/IJATEE.2021.874883.  

2. Yadav D., Yadav S., Veer K. A comprehensive assessment of Brain Computer 
Interfaces: Recent trends and challenges. Journal of Neuroscience Methods. 2020. 
vol. 346.  

3. Mridha M.F., Das S.C., Kabir M.M., Lima A.A., Islam M.R., Watanobe Y. Brain-
computer interface: Advancement and challenges. Sensors. 2021. vol. 21(17).  

4. Satpathy R.B., Ramesh G.P. Advance approach for effective EEG artifacts removal. 
Recent Trends and Advances in Artificial Intelligence and Internet of Things. 2020. 
pp. 267–278.  

5. Park Y., Han S.H., Byun W., Kim J.H., Lee H.C., Kim S.J. A real-time depth of 
anesthesia monitoring system based on deep neural network with large EDO tolerant 
EEG analog front-end. IEEE Transactions on Biomedical Circuits and Systems. 2020. 
vol. 14(4). pp. 825–837. DOI: 10.1109/TBCAS.2020.2998172.  

6. Thomas J., Thangavel P., Peh W.Y., Jing J., Yuvaraj R., Cash S.S., Chaudhari R., 
Karia S., Rathakrishnan R., Saini V., Shah N., Srivastava R., Tan Y.-L., Westover B., 
Dauwels J. Automated adult epilepsy diagnostic tool based on interictal scalp 
electroencephalogram characteristics: A six-center study. International journal of 
neural systems. 2021. vol. 31(05). DOI: 10.1142/S0129065720500744.  

7. Rasheed K., Qayyum A., Qadir J., Sivathamboo S., Kwan P., Kuhlmann L., O'Brien 
T., Razi A. Machine learning for predicting epileptic seizures using EEG signals: A 
review. IEEE reviews in biomedical engineering. 2021. vol. 14. pp. 139–155. 
DOI: 10.1109/RBME.2020.3008792.  

8. Kapgate D. Future of EEG based hybrid visual brain computer interface systems in 
rehabilitation of people with neurological disorders. International Research Journal on 
Advanced Science Hub. 2020. vol. 2(6). pp. 15–20.  

9. Raza H., Chowdhury A., Bhattacharyya S. Deep learning based prediction of EEG 
motor imagery of stroke patients’ for neuro-rehabilitation application. International 
Joint Conference on Neural Networks (IJCNN). IEEE. 2020. pp. 1–8.   

10. Mumtaz W., Rasheed S., Irfan A. Review of challenges associated with the EEG 
artifact removal methods. Biomedical Signal Processing and Control. 2021. vol. 68.  

11. Anwer S., Li H., Antwi-Afari M.F., Mirza A.M., Rahman M.A., Mehmood I., Wong 
A.Y.L. Evaluation of Data Processing and Artifact Removal Approaches Used for 
Physiological Signals Captured Using Wearable Sensing Devices during Construction 
Tasks. Journal of Construction Engineering and Management. 2024. vol. 150(1).  

12. Zangeneh Soroush M., Tahvilian P., Nasirpour M.H., Maghooli K., Sadeghniiat-
Haghighi K., Vahid Harandi S., Jafarnia Dabanloo N. EEG artifact removal using sub-
space decomposition, nonlinear dynamics, stationary wavelet transform and machine 
learning algorithms. Frontiers in Physiology. 2022. vol. 13. 
DOI: 10.3389/fphys.2022.910368.  

____________________________________________________________________

1437Informatics and Automation. 2025. Vol. 24 No. 5. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



13. Islam M.K., Rastegarnia A., Sanei S. Signal artifacts and techniques for artifacts and 
noise removal. Signal Processing Techniques for Computational Health Informatics. 
2021. pp. 23–79.  

14. Mahmood D., Nisar H., Voon Y.V. Removal of physiological artifacts from 
electroencephalogram signals: a review and case study. IEEE 9th Conference on 
Systems, Process and Control (ICSPC). 2021. pp. 141–146.   

15. Jindal K., Upadhyay R., Singh H.S. Application of hybrid GLCT-PICA de-noising 
method in automated EEG artifact removal. Biomedical Signal Processing and 
Control. 2020. vol. 60.  

16. Kotte S., Dabbakuti J.K. Methods for removal of artifacts from EEG signal: A review. 
In Journal of Physics: Conference Series. IOP Publishing. 2020. vol. 1706. no. 1.   

17. Ranjan R., Sahana B.C., Bhandari A.K. Ocular artifact elimination from 
electroencephalography signals: A systematic review. Biocybernetics and Biomedical 
Engineering. 2021. vol. 41(3). pp. 960–996.  

18. Sheela P., Puthankattil S.D. A hybrid method for artifact removal of visual evoked 
EEG. Journal of neuroscience methods. 2020. vol. 336.  

19. Kaur C., Bisht A., Singh P., Joshi G. EEG Signal denoising using hybrid approach of 
Variational Mode Decomposition and wavelets for depression. Biomedical Signal 
Processing and Control. 2021. vol. 65.  

20. Vallabhaneni R.B., Sharma P., Kumar V., Kulshreshtha V., Reddy K.J., Kumar S.S., 
Kumar V.S., Bitra S.K. Deep learning algorithms in EEG signal decoding application: 
a review. IEEE Access. 2021. vol. 9. pp. 125778–125786. 
DOI: 10.1109/ACCESS.2021.3105917.  

21. Pawar D., Dhage S.N. Feature extraction methods for electroencephalography based 
brain-computer interface: a review. Entropy. 2020. vol. 1(4).  

22. Ahmed M.A., Qi D., Alshemmary E.N. Effective hybrid method for the detection and 
rejection of electrooculogram (EOG) and power line noise artifacts from 
electroencephalogram (EEG) mixtures. IEEE Access. 2020. vol. 8. pp. 202919–
202932.  

23. Mathe M., Padmaja M., Krishna B.T. Intelligent approach for artifacts removal from 
EEG signal using heuristic-based convolutional neural network. Biomedical Signal 
Processing and Control. 2021. vol. 70. DOI: 10.1016/J.BSPC.2021.102935.  

24. Syamsundararao T., Selvarani A., Rathi R., Vini Antony Grace N., Selvaraj D., 
Almutairi K., Alonazi W.B., Priyan K.S.S., Mosissa R. An efficient signal processing 
algorithm for detecting abnormalities in EEG signal using CNN. Contrast Media & 
Molecular Imaging. 2022. vol. 2022. DOI: 10.1155/2022/1502934.  

25. Faiz M.M.U., Kale I. Removal of multiple artifacts from ECG signal using cascaded 
multistage adaptive noise cancellers. Array. 2022. vol. 14.  

26. Prasad D.S., Chanamallu S.R., Prasad K.S. Optimized deformable convolution 
network for detection and mitigation of ocular artifacts from EEG signal. Multimedia 
Tools and Applications. 2022. vol. 81(21). pp. 30841–30879.  

27. Behera S., Mohanty M.N. A Machine Learning Approach for Artifact Removal from 
Brain Signal. Computer Systems Science & Engineering. 2023. vol. 45(2).  

28. Lopes F., Leal A., Medeiros J., Pinto M.F., Dourado A., Dümpelmann M., Teixeira C. 
Automatic electroencephalogram artifact removal using deep convolutional neural 
networks. IEEE Access. 2021. vol. 9. pp. 149955–149970.  

29. Ghosh R., Phadikar S., Deb N., Sinha N., Das P., Ghaderpour E. Automatic eyeblink 
and muscular artifact detection and removal from EEG signals using k-nearest 
neighbor classifier and long short-term memory networks. IEEE Sensors Journal. 
2023. vol. 23(5). pp. 5422–5436.  

____________________________________________________________________

1438 Информатика и автоматизация. 2025. Том 24 № 5. ISSN 2713-3192 (печ.) 
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ



30. He H., Bai Y., Garcia E.A., Li S. ADASYN: Adaptive synthetic sampling approach 
for imbalanced learning. IEEE international joint conference on neural networks 
(IEEE world congress on computational intelligence). 2008. pp. 1322–1328.  

31. Kiranyaz S., Ince T., Gabbouj M. Real-time patient-specific ECG classification by 1-
D convolutional neural networks. IEEE transactions on biomedical engineering. 2015. 
vol. 63(3). pp. 664–675.  

32. Saremi S., Mirjalili S., Lewis A. Grasshopper optimisation algorithm: theory and 
application. Advances in engineering software. 2017. vol. 105. pp. 30–47.  

33. Kirkpatrick S., Gelatt Jr C.D., Vecchi M.P. Optimization by simulated annealing. 
Science. 1983. vol. 220(4598). pp. 671–680. DOI: 10.1126/science.220.4598.671. 

 
Kokate Ashwini Amol — Professor, Department of electronics and telecommunication 
engineering, BRACT’s Vishwakarma Institute of Information Technology. Research interests: 
electronics and telecommunications engineering. ashwini279@gmail.com; Kondhawa, Pune, 
India; office phone: +91(20)2695-0200. 
 
Jadhav Tushar R. — Professor, Department of electronics and telecommunication 
engineering, BRACT’s Vishwakarma Institute of Information Technology. Research interests: 
electronics and telecommunications engineering. tushar.jadhav@viit.ac.in; Kondhawa, Pune, 
India; office phone: +91(20)2695-0200. 
 
  

____________________________________________________________________

1439Informatics and Automation. 2025. Vol. 24 No. 5. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING



УДК 004 DOI 10.15622/ia.24.5.6 
 

А. КОКАТЕ, Т. ДЖАДХАВ 
НОВЫЙ ПОДХОД К УДАЛЕНИЮ АРТЕФАКТОВ ЭЭГ 

С ИСПОЛЬЗОВАНИЕМ ADASYN И ОПТИМИЗИРОВАННОЙ 
ИЕРАРХИЧЕСКОЙ ОДНОМЕРНОЙ СВЕРТОЧНОЙ 

НЕЙРОННОЙ СЕТИ 1D CNN 
 

Кокате А., Джадхав Т. Новый подход к удалению артефактов ЭЭГ 
с использованием ADASYN и оптимизированной иерархической одномерной 
сверточной нейронной сети 1D CNN. 

Аннотация. В нейронауке, нейроинженерии и биомедицинской инженерии 
электроэнцефалография (ЭЭГ) широко используется благодаря своей неинвазивности, 
высокому временному разрешению и доступности. Однако шум и физиологические 
артефакты, такие как сердечные, миогенные и глазные артефакты, часто искажают 
исходные данные ЭЭГ. Методы шумоподавления на основе глубокого обучения (DL) 
могут уменьшать или устранять эти артефакты, которые ухудшают ЭЭГ-сигнал. 
Несмотря на наличие этих методов, значительные артефакты всё ещё могут снижать 
эффективность анализа, что делает удаление шума основным требованием для точного 
анализа ЭЭГ. Кроме того, для эффективного удаления артефактов представлена 
оптимизированная иерархическая одномерная сверточная нейронная сеть (1D CNN). Для 
эффективного извлечения признаков иерархическая CNN сочетает в себе максимальное 
объединение, функцию активации ReLU и адаптивные сверточные окна. Для 
оптимизации параметров сети применяется алгоритм отжига кузнечика (AGA), что 
дополнительно улучшает устранение артефактов. Для обеспечения всестороннего 
исследования и сходимости к идеальным настройкам CNN, AGA сочетает точность 
тонкой настройки метода имитации отжига (SA) с глобальными исследовательскими 
возможностями алгоритма оптимизации кузнечика (GOA). Используя гибридный 
подход, сеть может более эффективно устранять артефакты на различных иерархических 
уровнях, что приводит к заметному улучшению чёткости сигнала и общей точности. 
Очищенные данные ЭЭГ представлены восстановленными элементами в последнем 
плотном слое иерархической одномерной CNN, использующей сигмоидальную 
функцию. Согласно экспериментальным результатам, предложенный метод достиг 
пикового отношения сигнала к шуму (PSNR) 29,5 дБ, средней абсолютной ошибки 
(MAE) 11,32, среднеквадратической ошибки (RMSE) 0,011 и коэффициента корреляции 
(CC) 0,93, что превосходит результаты предыдущих работ. Предложенный метод 
позволяет повысить точность удаления артефактов ЭЭГ, что является полезным 
дополнением к обработке биомедицинских сигналов и нейроинженерии.  

Ключевые слова: электроэнцефалография (ЭЭГ), обработка сигналов, сверточная 
нейронная сеть (CNN), имитация отжига (SA), алгоритм оптимизации кузнечика (GOA). 
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