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Abstract. In this study, we present a novel model called ADA-NAF (Anomaly Detection
Autoencoder with the Neural Attention Forest) for semi-supervised anomaly detection that uniquely
integrates the Neural Attention Forest (NAF) architecture which has been developed to combine a
random forest classifier with a neural network computing attention weights to aggregate decision
tree predictions. The key idea behind ADA-NAF is the incorporation of NAF into an autoencoder
structure, where it implements functions of a compressor as well as a reconstructor of input
vectors. Our approach introduces several technical advances. First, a proposed end-to-end training
methodology over normal data minimizes the reconstruction errors while learning and optimizing
neural attention weights to focus on hidden features. Second, a novel encoding mechanism
leverages NAF’s hierarchical structure to capture complex data patterns. Third, an adaptive
anomaly scoring framework combines the reconstruction errors with the attention-based feature
importance. Through extensive experimentation across diverse datasets, ADA-NAF demonstrates
superior performance compared to state-of-the-art methods. The model shows particular strength
in handling high-dimensional data and capturing subtle anomalies that traditional methods often do
not detect. Our results validate the ADA-NAF’s effectiveness and versatility as a robust solution for
real-world anomaly detection challenges with promising applications in cybersecurity, industrial
monitoring, and healthcare diagnostics. This work advances the field by introducing a novel
architecture that combines the interpretability of attention mechanisms with the powerful feature
learning capabilities of autoencoders.

Keywords: anomaly detection, random forest, attention mechanism, neural attention forest.

1. Introduction. Anomaly detection is a critical task in data analysis,
focusing on identifying rare events or observations that significantly deviate
from the norm in a given system or dataset [1]. Its importance spans numerous
fields, including finance, healthcare, manufacturing, and network security,
where anomalies often indicate critical issues or potential threats [2]. These
deviations can arise from various sources such as measurement errors,
deliberate attacks, equipment malfunctions, or rare natural phenomena.
Traditional anomaly detection methods, primarily based on rule-based systems
or statistical techniques, often struggle with complex, high-dimensional data [3].
This limitation has led to the development of more sophisticated approaches,
particularly in the realm of unsupervised and semi-supervised learning,
where the algorithms learn to identify anomalies with limited or no labeled
examples [4–6].

Unsupervised anomaly detection is particularly valuable when datasets
lack labeled anomalies or when the types of anomalies are not well-defined.
These techniques aim to learn the underlying structure and distribution of
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the data, enabling the identification of instances that diverge from learned
patterns [7]. The applications of such methods are wide-ranging, encompassing
areas like cybersecurity, fraud detection, network monitoring, manufacturing
quality control, medical diagnostics, and environmental monitoring [8, 9]. In
recent years, significant advancements have been made in deep learning-based
approaches to anomaly detection. Autoencoders, a type of artificial neural
network, have shown remarkable success in this domain [10]. By learning
to reconstruct input data, autoencoders can effectively capture underlying
patterns and dependencies, allowing for the identification of anomalies based
on reconstruction errors.

In this article, we propose a novel semi-supervised anomaly detection
approach called ADA-NAF (Anomaly Detection Autoencoder with Neural
Attention Forest). This model uniquely adapts the Neural Attention Forest [11]
as an autoencoder to learn representations of normal data. We benchmark
ADA-NAF against prominent techniques such as Isolation Forest (IF) [12] and
its Deep extension (DIF) [13].

The primary aim of this research is to address limitations in existing
methods, particularly for semi-supervised scenarios and complex data
distributions. ADA-NAF leverages the strengths of neural attentionmechanisms
and Random Forests within an autoencoder framework, offering potential
improvements in accuracy and interpretability compared to current state-of-
the-art methods.

Our key contributions are:
– Introduction of ADA-NAF, a novel anomaly detection model that

implements a pretraining step using Random Forest to cluster feature vectors,
enabling its use on unlabeled data.

– Development of a multi-head extension to ADA-NAF, enhancing
robustness through the adaptation of multi-head attention mechanisms.

– Comprehensive evaluation of ADA-NAF’s performance against other
models on benchmark datasets.
The paper is structured as follows: Section 2 reviews related work, Section 3
provides background on autoencoders and the Neural Attention Forest model,
Sections 4 and 5 detail our proposed approach, Sections 6 and 7 present the
experimental setup and results, and Section 8 concludes the paper.

2. Related works. Anomaly detection techniques. The field of
anomaly detection has evolved from traditional statistical methods to more
advanced machine learning and deep learning approaches. The authors in [14]
provide a comprehensive survey of network anomaly detection techniques,
covering statistical, classification-based, and clustering-based methods. Recent
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advancements in deep learning have led to promising results in anomaly
detection tasks [15, 16].

Deep learning in anomaly detection. Deep learning-based approaches
have gained significant traction in anomaly detection research. These include
self-supervised learning [17], One-Class Classification (OCC) [18], and
specialized techniques for time series anomaly detection [19]. Chalapathy and
Chawla [20] offer a thorough survey of deep learning methods for anomaly
detection, highlighting their effectiveness across various domains.

Specialized applications. The versatility of deep learning in anomaly
detection is evident in its application to diverse fields. For instance, the
authors in [21] focus on anomaly detection in log data, while the authors [22]
explore GAN-based methods. Suarez and Naval [23] investigate deep learning
techniques for video anomaly detection, and Tschuchnig and Gadermayr [24]
review anomaly detection methods in medical imaging, specifically for brain
MRI.

Attention mechanisms in anomaly detection. Attention mechanisms,
which enable models to focus on the most relevant parts of the data, have been
successfully applied to anomaly detection tasks [25, 26]. Notable examples
include:

– Study [28] proposes a GAN-based approach with an attention
mechanism for detecting anomalies in semiconductor production sensor data.

– The authors in study [29] introduce a deep learning model with an
attention mechanism for anomaly detection in vector magnetic field data.

– Paper [30] presents a graph-based anomaly detection algorithm
utilizing an attention mechanism.
These attention-based models differ in their underlying architectures and
data representations. The GAN-based approach [28] focuses on generating
normal data patterns, [29] and [30] present different approaches to anomaly
detection using attention mechanisms. The model in [29] uses a multi-layer
neural network for vector magnetic field data, with its depth determined by
input complexity and desired feature abstraction. In contrast, [30] introduces a
graph-based algorithm, where depth refers to the number of graph convolution
layers. While both utilize attention mechanisms, they differ fundamentally in
data representation and processing: [29] uses vector inputs and traditional
neural networks, while [30] leverages graph structures to capture relational data
information, a capability that traditional deep learning models may lack. The
depth and complexity of these models are tailored to their specific application
domains and data types.

Autoencoder-based approaches. Autoencoders have proven
particularly effective for anomaly detection in high-dimensional and
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unbalanced datasets [5]. The authors in [6] explore the use of autoencoder
ensembles to enhance anomaly detection accuracy. These approaches leverage
the autoencoder’s ability to learn compact representations of normal data,
facilitating the identification of anomalies through reconstruction errors.

Random Forest in anomaly detection. The integration of attention
mechanisms with Random Forests has emerged as a promising direction in
anomaly detection research. Utkin and Konstantinov [32,33] introduced the
Attention-based Random Forest, which assigns attention weights to data in tree
leaves using neural networks. This approach, framed within Nadaraya-Watson
kernel regression [34], offers a novel perspective on combining tree-based
methods with neural attention mechanisms. Our work, ADA-NAF, builds upon
these foundations, particularly the Neural Attention Forest framework, to create
a unique autoencoder-based model for semi-supervised anomaly detection. By
integrating the strengths of Random Forests, neural attention, and autoencoder
architectures, ADA-NAF aims to address the challenges of detecting anomalies
in complex, high-dimensional data with limited labeled examples.

3. Preliminaries
3.1. Autoencoders for Anomaly Detection. Autoencoders are neural

networks designed to learn the internal representation of data by training it
on input and reconstructing itself as output [17, 35, 36]. One of the important
applications of autoencoders is anomaly detection, that is, the detection of
unusual or anomalous patterns in data.

Let there be training data x = (x1,x2, . . . ,xN ), where xi ∈ Rd is a
d-dimensional vector, N is a count of training data. The task of anomaly
detection is to detect anomalous samples for this training dataset. Let
y = (y1, y2, . . . , yN ) be the label vector, where yi ∈ {0, 1} indicates
whether xi is an anomaly (yi = 1) or a normal pattern (yi = 0). The problem
of anomaly detection can be formulated as a supervised learning problem,
where it is required to build a model f : Rd → {0, 1} that will classify
new samples as anomalies or normal. Autoencoders use only normal data for
training.

Autoencoders are a class of neural networks that allow you to model
non-linear dependencies and extract important features from input data. They
consist of two main components: an encoder and a decoder. The encoder
transforms the input data into an internal representation called the encoding,
and the decoder restores the data from the encoding back to its original space.

Mathematically, let x ∈ Rd be an input vector of dimension d and
z ∈ Rh be an encoding vector of dimension h, where h < d. The encoder is
modeled as a function E : Rd → Rh and the decoder is modeled as a function
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D : Rh → Rd. Then the process of encoding and decoding can be written as
follows:

z = E(x), x̂ = D(z), (1)

where x̂ ∈ Rd is the reconstruction of the input vector x ∈ Rd.
To train the autoencoder, we use a recovery method that minimizes the

recovery error between the input data and its reconstruction. Denote the loss
function as L(x, x̂), which measures the discrepancy between the input vector
and its reconstruction. Popular loss functions are root mean square error (MSE)
and binary cross entropy (BCE). The goal is to minimize this loss function.

In the context of anomaly detection, autoencoders can be used to detect
abnormal patterns based on differences between normal and abnormal data.
Training the autoencoder on a set of only normal samples allows the model to
learn the characteristics of the normal data and create a model that will have
a high reconstruction error for the anomalies since the anomalies will differ
from the expected normal distribution.

One of the popular approaches to anomaly detection using autoencoders
is the threshold approach. After training the autoencoder on normal data, we
can use it to reconstruct new samples and calculate the reconstruction error.
We then set a threshold ϵ above which samples are considered anomalous.
Samples for which the reconstruction error exceeds the threshold are considered
anomalies.

Formally, let xtest ∈ Rd be a new sample, and its reconstruction is
denoted as x̂test ∈ Rd. Then the anomaly detection algorithm can be written as
follows:

Anomaly Score(xtest) = L(xtest, x̂test). (2)

If Anomaly Score(xtest) > τ , where τ ∈ R is the given threshold, then
sample xtest is considered anomalous.

However, the threshold approach has its limitations, as determining the
optimal threshold can be challenging. Several methods can be employed to
address this issue:

– Statistical methods: using measures of the reconstruction error.
– Percentile-based approach: setting the threshold at a specific

percentile (e.g., 95th or 99th) of the error distribution.
– ROC curve analysis: optimizing the threshold using labeled data to

maximize a chosen metric.
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– Cross-validation: determining a robust threshold that generalizes
across data subsets.

– Adaptive thresholding: implementing dynamic thresholds adjusting
to recent data patterns.

– Ensemble methods: combining multiple thresholds for a more robust
decision boundary.

The choice of method depends on the application context, available
data, and the relative costs of false positives versus false negatives.

3.2. The Neural Attention Forest. The Neural Attention Forest (NAF)
is a novel approach that integrates the attention mechanism into the Random
Forest [11]. The primary objective is to assign attention weights, computed
by neural networks of a specific architecture, to data in the leaves of decision
trees and to the Random Forest itself. This is achieved within the framework
of the Nadaraya-Watson kernel regression.

The attention mechanism in NAF is implemented by two distinct parts
of the neural network:

1. Tree-specific Attention. The first part consists of neural networks
with shared weights, trained for all trees. This part computes the attention
weights for data in the leaves. For each tree, the attention operation is
implemented as:

Ak(x) =
∑

j∈Jk(x)

α(x,xj , θ)xj , (3)

Bk(x) =
∑

j∈Jk(x)

α(x,xj , θ)yj , (4)

where Ak(x) ∈ Rd, Bk(x) ∈ R, x ∈ Rd and Jk(x) represents the set of
indices for which the feature vectors xj ∈ Rd fall into the same leaf of the k-th
tree as x ∈ Rd, yj ∈ R is the output corresponding to the feature vector xj ,
θ is a parameter of neural network. The attention weight α(x,xj , θ) ∈ R is
calculated by a neural network with θ parameters.

2. Global Attention. The second part of the neural network aggregates
all the keys Ak(x) and values Bk(x) from the tree-specific attention. The
global attention operation is:

ŷ =

T∑
k=1

β(x,Ak(x), ψ)Bk(x), (5)
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whereAk(x) and Bk(x) are the keys and values, respectively, computed for
each tree, β(x,Ak(x), ψ) ∈ R is the global attention weight calculated by
a neural network with ψ params, and T is the total number of trees in the
Random Forest.

It should be noted that the neural network here has a specific architecture
with scaled dot-product score output to implement the attention mechanism.
The first part computes the trainable attention weights for each tree’s data.
The second part then aggregates the weighted outputs to produce the final
prediction.

4. ADA-NAF for Anomaly Detection. ADA-NAF model uniquely
integrates the Neural Attention Forest framework into an autoencoder
architecture for anomaly detection. The key idea is to leverage ADA-NAF as an
autoencoder that compresses input vectors into encoded feature representations,
and then reconstructs the original input.

A schematic depiction of leveraging ADA-NAF for anomaly detection
is presented in Figure 1.

Fig. 1. The architecture of the proposed ADA-NAF model for anomaly detection
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The input feature vector x ∈ Rd passes through the Random Forest
component to compute leaf node assignments Jk(x) and attention-weighted
aggregate representations Ak(x), Bk(x) for each k tree. The global attention
module uses these to produce a reconstructed vector x̂ ∈ Rd:

x̂ =

T∑
k=1

β(x,Ak(x), ψ) · Ak(x). (6)

The distance between the input x and reconstruction x̂ is computed,
such as the Euclidean distance:

D(x, x̂) = ||x− x̂||2. (7)

IfD(x, x̂) > τ , where τ is a threshold, then x is flagged as an anomaly.
The threshold τ can be determined based on the distribution of distances for
known non-anomalous data or through cross-validation.

The neural attention focuses on modeling normal data during training.
At test time, anomalies result in larger reconstruction errors, allowing their
detection. The key differentiating aspects from NAF are

– end-to-end training solely over normal data samples by minimizing
reconstruction error;

– discovering a compressed feature encoding rather than performing
supervised prediction;

– detecting anomalies based on deviation between inputs and
reconstructions.

These structural modifications reshape the purpose of attention – instead
of predictive performance, the focus is shifted towards the characterization of
normality and subsequent identification of violations manifesting as anomalies
at test time. This repurposing of the neural attention framework is the core
innovation in ADA-NAF.

The general approach to training ADA-NAF for anomaly detection is
shown in Figure 2:

1. Training the Random Forest component on a small labeled dataset:
– DatasetXlabled ∈ Rn×d contains n examples with dimension d with

normal/anomalous class labels.
– Classification loss like cross-entropy is minimized:

min
θtree

L(θtree) = min
θtree

LossCE(θtree,Xlabled,ylabled), (8)
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where ylabled ∈ Rn are labels from datasetXlabled.
– The trained Random Forest is used to compute Jk(x) - leaf indices

for input vector x.
2. Training ADA-NAF model parameters θ, ψ by minimizing

reconstruction error on normal training setXtrain:

– Xtrain contains only normal class examples.
– Mean squared reconstruction error is minimized:

L(θ, ψ) =
1

n

∑
x∈Xtrain

||x− x̂||2. (9)

Xlabeled ∈ Rn×d Xtrain ∈ Xlabeled

minθtree L(θtree) (θ, ψ)opt = argminθ,ψ L(θ, ψ)

Fig. 2. ADA-NAF model training scheme for anomaly detection. Examples of normal
data are shown in blue, and abnormal data in red. First, the Random Forest component
is trained on a small labeled dataset. The entire ADA-NAF model is then trained to
minimize the autoencoder reconstruction error using normal class examples only

The complete training and anomaly detection process for ADA-NAF is
summarized in Listing 1. This algorithm outlines the two main stages of our
approach: first, training the Random Forest component on a labeled subset of
the data, and then training the whole ADA-NAF model on the normal data to
minimize reconstruction error.

Input: X_train, X_test, number of trees T
Output: Anomaly scores

// Train the Random Forest
Train the Random Forest on a labeled subset of X_train
for each tree k in 1 to T:
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Compute leaf node assignmentsJk (x) for all x in X_train

// Train ADA−NAF
Initialize neural attention weights θ , ψ
while not converged:

for each x in X_train:
ComputeA_k (x) and B_k (x) using Eqs. (3) and (4)
Compute reconstruction x̂ using Eq. (5)
Update θ , ψ to minimize | |x− x̂||^2

// Detect anomalies
for each x in X_test:

Compute reconstruction x̂
Compute anomaly score as | |x− x̂||^2

Listing 1. Pseudocode of ADA-NAF training and anomaly detection algorithm

So the Random Forest component is first trained on labeled data, then
the whole ADA-NAF model is fitted on unlabeled normal data by minimizing
the autoencoder reconstruction error.

The neural network attention weights focus on normal examples during
training. At test time, anomalies are then unlikely to be properly reconstructed,
leading to larger errors that allow their detection.

Key advantages of the ADA-NAF anomaly detection approach
include:

– Handles tabular data effectively through the Random Forest base
model which stratifies the feature space.

– Learns a rich latent representation that captures boundaries between
normal and anomalous data patterns.

– Leverages an initial labeled set to pre-train the Random Forest
component for feature space stratification, then allows semi-supervised learning
on unlabeled data for attention tuning.

– Provides local example-based explanations by selecting training
points most influential for reconstructions based on learned attention weights.
ADA-NAF’s attention mechanisms assign importance weights to training
examples. By analyzing the nearest neighbors of reconstructions according to
these attention weights, we can extract influential examples that inform the
model’s predictions.

– Complementary to existing methods with competitive performance
across various benchmark datasets.

We experimentally evaluate the proposed ADA-NAF anomaly detection
method in Section 6.
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5. Multi-Head ADA-NAF for Anomaly Detection. In the Multi-Head
ADA-NAF (ADA-NAF-MH), we enhance the model by introducing multiple
heads, as commonly done in transformer architectures [37]. Each attention
head operates independently, with its own set of parameters, allowing for
diverse attention patterns and reconstructions. As introduced in [37], multi-
head attention projects the inputs into multiple subspaces and applies separate
attention layers in parallel, before concatenating the outputs. This multi-head
approach aims to capture complementary representations of the data, improving
the model’s robustness and accuracy.

Formally, for a given number of headsH , each head i is initialized with
its own set of parameters θ(i) and ψ(i).

Each head computes its own attention vectors as

A(i)
k (x) =

∑
j∈Jk(x)

α(i)(x, xj , θ(i))xj , (10)

B(i)
k (x) =

∑
j∈Jk(x)

α(i)(x, xj , θ(i))yj , (11)

where α(i) represents the attention weight computed by the i-th head.
The reconstruction for each head is given by:

x̂(i) =
T∑
k=1

β(i)(x,A(i)
k (x), ψ(i))B(i)

k (x). (12)

To aggregate the outputs of all heads, we compute an unweighted
average:

x̂ =
1

H

H∑
i=1

x̂(i). (13)

The model is trained to minimize the reconstruction loss on the normal
training data:

L(θ(1), ..., θ(H), ψ(1), ..., ψ(H)) =
∑

x∈Xtrain

||x− x̂||2. (14)
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Specifically for anomaly detection, the multi-head extension enhances
flexibility in capturing boundaries between normal and anomalous data points.
Crucially, edge cases might be flagged by specialized heads finetuned through
individual parameterizations. ADA-NAF-MHA architecture aims to fuse these
signals into a unified detector of higher sensitivity.

6. ϵ-contamination attention regularization. We introduce
an ϵ-contamination style regularization approach to impose robustness in the
learned attention distributions while retaining sensitivity for anomaly detection.
The global attention mechanism in ADA-NAF produces the reconstruction as:

x̂ =

T∑
k=1

β(x,Ak(x), ψ) · Ak(x). (15)

To enhance the robustness of this attention mechanism, we propose
modifying the reconstruction process as follows:

x̂′ =

T∑
k=1

((1− ϵ)β(x,Ak(x), ψ) + ϵ · sofmax(W)) ·Ak(x), (16)

where W ∈ RT is a trainable parameter, randomly initialized. The
contamination ratio ϵ controls the amount of mixing of W into the primary
attention distribution β. This introduces a regularization effect that encourages
the model to discover additional informative patterns beyond those identified
by the original attention mechanism.

Experiments are conducted with ADA-NAF models trained using
different fixed ϵ values.

We hypothesize that the ϵ-contamination attention regularization
induces differing effects based on the ϵ level:

1. Small ϵ (0.1-0.2) introduces beneficial noise that improves stability
and robustness to distortions without sacrificing sensitivity. Attention retains
the focus on hidden features.

2. Large ϵ (>0.3) overwhelms useful signals, over-regularizing
attention and reducing sensitivity to anomalies along with representations
losing usefulness.

3. An optimal ϵ balances noise injection for desirable stability while
avoiding dilution of attention selectivity. This optimal point is expected to be
dataset and architecture-dependent.
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7. Numerical experiments. The aim of this chapter is to provide a
comprehensive evaluation of the proposedmethod using numerical experiments.
The experiments are designed to demonstrate the effectiveness of the method
in comparison to the other described in this article approaches, and to show
the impact of various parameters on the performance of the method. In the
experiments, we will compare the performance of the three models on a variety
of datasets and use standard evaluation metrics such as AUC-ROC to assess the
performance of each model. The results will be presented in the form of tables
and graphs to allow for a clear and comprehensive comparison of the models.

Gradient descent is used for optimization with the following parameters:
learning rate is 0.01, optimizer is AdamW, and the count epoch is 50.

ADA-NAF is implemented bymeans of software in Python. The software
implementing ADA-NAF is available at https://github.com/AndreyAgeev/
ada-naf.

7.1. Experimental Setup. In this section, we describe the dataset used
in the experiments, the evaluation metrics, and the implementation details.

7.1.1. Datasets. We experiment over the following public anomaly
detection benchmarks:

– Arrhythmia [38] – Collection of electrocardiogram (ECG) heartbeat
segments from UCI Machine Learning Repository annotated with cardiac
condition type.

– Credit Card [39] – Confidential credit card transactions dataset
shared by a financial services company on Kaggle for analytics purposes and
fraud detection.

– Pima [40] – Medical diagnostic measurements from Pima Indian
diabetes patients released as part of open dataset collection by the National
Institute for Diabetes and Digestive and Kidney Diseases.

– Haberman [41] – Historical dataset documenting breast cancer
survival study featuring age of patients, year of surgery and number of detected
axillary nodes. Hosted on UCI data repository.

– Ionosphere [42] – Radar data returns bounced off the ionosphere
layer labeled as good or bad structures based on evidence of turbulence/stability
patterns. Very common classification benchmark.

– Seismic bumps [43] – Recordings gathered from seismographic
sensors in coal mines indicating warning signs of impending seismic bumps or
just ambient tremors published as an open dataset.

– Shuttle [44] – Systemhealth datawith sensor readings and component
fault status during simulated space shuttle flights released by NASA for
engineering challenges.

341

____________________________________________________________________

Informatics and Automation. 2025. Vol. 24 No. 1. ISSN 2713-3192 (print) 
ISSN 2713-3206 (online) www.ia.spcras.ru

ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

https://github.com/AndreyAgeev/ada-naf
https://github.com/AndreyAgeev/ada-naf


– Annthyroid [45] – Patient records tabulating biomarker readouts,
test outcomes and diagnoses for differentiation of thyroid gland malfunction
symptoms.

– Bank Additional [46] – Financial customer data on marketing
campaign responses used for response modeling and fraud analysis hosted as a
public dataset.

– CelebA [47] – Large-scale face image dataset with celebrity photos
annotated for the presence/absence of multiple facial attributes like expressions,
hair color, age, etc.

Table 1 shows a dataset information table.
For large real datasets, data slices are taken and instead of the full data.

The slice size is indicated in the table with the description of the data. Before
applying the methods, data preprocessing was carried out on some of the
presented datasets, including data normalization and feature selection. The
dataset preprocessing code is in https://github.com/AndreyAgeev/ada-naf.

Table 1. A brief introduction about the datasets
Dataset normal anomal n feature

Arrhythmia 386 66 17
Credit 1500 400 30
Pima 500 268 8

Haberman 225 81 3
Ionosphere 225 126 33

Seismic bumps 2584 170 21
Shuttle 1000 13 9

Annthyroid 500 50 21
Bank additional 500 50 62

Celeba 500 50 39

7.1.2. Evaluation Metrics. In the experiments, we use the following
evaluation metrics to assess the performance of the method:

– AUC-ROC.
To evaluate the AUC-ROC, 66.7% of the data were randomly selected

for training and 33.3 % were randomly selected for testing. 33.3 % of the
training dataset is also allocated to validation, which saves the best model.

7.1.3. Implementation Details. The proposed method was
implemented using the programming language Python and the library PyTorch.

The following models were compared with each other:
– IF [12];
– DIF [13];
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– autoencoder model with 2 hidden layers of size d/2 with ReLU
activations;

– ADA-NAF (ADA-NAF-1) model with one hidden layer containing
d/2 units;

– ADA-NAF (ADA-NAF-3) model with 3 hidden layers each again d/2
width with Tanh nonlinearities;

– multi-head ADA-NAF (ADA-MH-3-NAF-1) extending above using
H=3 attention heads based on varied weight initializations (uniform, Xavier,
normal distribution) that integrate both local tree-attention and global
aggregation, with one hidden layer containing d/2 units;
where d is the input features for each dataset.

IF [12] is an unsupervised anomaly detection method based on the
principle that anomalies are few and different, and thus should be easier to
isolate in a dataset. The algorithm works by randomly selecting a feature and
then randomly selecting a split value between the maximum and minimum
values of that feature. This process is repeated recursively to create a tree
structure. Anomalies are points that require fewer splits to be isolated from the
rest of the data.

DIF [13] extends the concept of Isolation Forest by incorporating
deep learning techniques. Instead of using raw features for splitting, DIF first
transforms the input data using a neural network. This allows the model to
learn complex, non-linear feature representations that can potentially lead to
more effective isolation of anomalies. The depth of the model in DIF refers
to both the depth of the neural network used for feature transformation and
the depth of the isolation trees constructed on these transformed features. This
combination of deep feature learning and isolation enables DIF to potentially
capture more complex anomaly patterns than the original Isolation Forest.

8. Experimental Results. In this section, we present and discuss the
experimental results.

8.1. Comparison between models. To measure the performance, we
use the AUC-ROC score, which is a commonly used metric in anomaly
detection. We compare the AUC-ROC score dependence on several datasets.

The results are shown in Table 2.
For these experiments, the number of trees was taken as 100 and the

count epoch is 50. Mean squared error (MSE) was taken as a distance function
for ADA-NAF-based models.

We use 3 different seeds when building trees, and 3 shuffle train/test
datasets, and then average the results of the metrics. The results in Table 2
demonstrate that the proposed ADA-NAF approach is competitive with state-of-
the-art anomaly detection techniques across the diverse benchmark datasets. On
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the Credit Card, Ionosphere, Annthyroid, Shuttle, Celeba and Bank Additional
datasets, ADA-NAF models achieve the highest or near highest AUC-ROC
scores compared to the baseline methods. This underscores ADA-NAF’s
capability to effectively model the complex boundaries between normal and
anomalous data patterns for these domains.

Table 2. Comparison of AUC-ROC for different models on different datasets
Dataset IF DIF Autoencoder
Arrhytmia 0.791± 0.02 0.780± 0.01 0.771± 0.01
Credit 0.968± 0.01 0.935± 0.01 0.962± 0.01
Haberman 0.658± 0.08 0.602± 0.07 0.571± 0.07
Ionosphere 0.912± 0.03 0.909± 0.02 0.896± 0.03
Pima 0.727± 0.03 0.689± 0.03 0.689± 0.01
Seismic bumps 0.690± 0.02 0.710± 0.02 0.680± 0.02
Shuttle 0.842± 0.04 0.966± 0.04 0.967± 0.02
Annthyroid 0.848± 0.04 0.728± 0.03 0.697± 0.04
Celeba 0.732± 0.06 0.772± 0.05 0.740± 0.01
Bank additional 0.731± 0.03 0.717± 0.04 0.796± 0.06
Average 0.790 0.781 0.777

Dataset ADA-NAF-1 ADA-NAF-3 ADA-NAF-MH
Arrhytmia 0.702± 0.06 0.674± 0.06 0.754± 0.04
Credit 0.972± 0.01 0.941± 0.02 0.997± 0.01
Haberman 0.580± 0.10 0.569± 0.09 0.567± 0.04
Ionosphere 0.960± 0.02 0.922± 0.02 0.961± 0.01
Pima 0.641± 0.03 0.617± 0.03 0.637± 0.03
Seismic bumps 0.695± 0.02 0.683± 0.02 0.704± 0.02
Shuttle 0.990± 0.01 0.790± 0.11 0.936± 0.09
Annthyroid 0.891± 0.02 0.748± 0.05 0.867± 0.03
celeba 0.697± 0.10 0.672± 0.09 0.843± 0.04
Bank additional 0.721± 0.03 0.700± 0.07 0.797± 0.03
Average 0.785 0.732 0.806

Notably, the DIF technique displays superior performance on the
Arrhythmia, Haberman, and Pima datasets as evidenced by the higher AUC-
ROC values. This indicates DIF’s particular suitability for modeling anomalies
in these medical-related tabular datasets. However, ADA-NAF variants still
produce reasonable scores, elucidating the promise of the neural attention-
based framework. An ablative analysis reveals that typically the multi-head
ADA-NAF configuration demonstrates a slight edge over the single-headed
version, corroborating the benefits of fusing diverse attention representations.
Comparing shallow and deeper ADA-NAF models, gains from additional
layers are dataset dependent – aligning with established knowledge that
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optimal depth is contingent on data complexity. In summary, ADA-NAF puts
forth a highly competitive semi-supervised technique for anomaly detection
grounded in cutting-edge neural attention architectures. The experiments
validate applicability to heterogeneous data domains with performance rivaling
current state-of-the-art approaches. This underscores the potential of innovating
tailored neural attention mechanisms for advancing anomaly detection.

8.2. Noise contamination of training set. Real-world datasets often
contain some degree of inherent anomalies or mislabeled points overlapping
with normal classes. It is vital to evaluate model robustness towards such
contaminated training data. We simulate this by injecting anomalies masked
as normal into the ADA-NAF training set in a controlled manner. To evaluate
the impact of contaminated training data, we construct noisy variants of the
normal set Xnormal as follows:

1. We start with the completely normal training examplesXnormal with
size as |Xanomalous|, where Xanomalous is the anomalous samples.

2. Noisy normal sets are prepared by combining normal and anomalous
points:

X
(A)
normal: Take A% of the anomalous samples from Xanomalous and

combine them with (100 - A)% of the normal instances in Xnormal.
3. Train ADA-NAF separately on Xnormal, X(12.5)

normal, X
(25)
normal,

X
(37.5)
normal and X

(50)
normal while RF trains on balanced data.

The experiment evaluates how introducing different levels of noise into
the training set affects the performance of ADA-NAF models in detecting
anomalies. Understanding the impact of noise on ADA-NAF training is critical
to improvingmodel robustness and reliability, especially in real-world scenarios
where the data often contains some level of noise or anomalies.

We use 3 seeds while building RF with 3 shuffle dataset cross-validation,
the count epoch is 50, number of trees is 100.

Results in Figure 3 – 5 showcase the impact on AUC scores for the
Ionosphere, Annthyroid and Celeba datasets. We compare 3 model variants:
single hidden layer ADA-NAF, 3 hidden layer ADA-NAF and 3 headed
attention with 1 hidden layer. Overall we observe performance degradation as
anomalous points increasingly pollute the normal class data. The Annthyroid
dataset displays the most graceful lowering of AUC compared to sudden
drops for Celeba, indicating robustness. The multi-head architecture appears
significantly more stable than standard ADA-NAF, retaining higher accuracy
despite up to 50% contamination. This underscores the flaw of diversified
attention heads in establishing reliable boundaries between normality and
anomaly. The findings highlight the variability in the impact of label noise on
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different models and datasets. For real-world anomaly detection, pre-filtering
training data to minimize contamination would enhance ADA-NAF’s detection
capability. Online learning schemes to continually adapt to new normal and
anomalous data are another strategy to offset declining performance over time.
The analysis provides vital perspectives on the reliability of semi-supervised
approaches in practice.

Fig. 3. AUC graphs for the Annyhyroid dataset with different noise injection

Fig. 4. AUC graphs for the Celeba dataset with different noise injection
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Fig. 5. AUC graphs for the Ionosphere dataset with different noise injection

8.3. ϵ-contamination. To evaluate the impact of the proposed
regularization method, we conduct experiments with ADA-NAF models
trained using different fixed ϵ values. We train multiple models while keeping
all settings identical except for the ϵ hyperparameter controlling the admixture
amount of the random attention matrix W. Models are trained end-to-end on
the same normal training set for a fixed number of epochs. Specifically, we
select ϵ values spread over the [0, 0.5] range. For each value, we train an
ADA-NAF variant regularized with the corresponding ϵ contamination ratio.
We plot the metrics vs ϵ to analyze the regularization impact. We hypothesize a
non-linear influence, with small ϵ likely improving robustness hence detection
accuracy by balancing noise, while large values can overwhelm true signals.
The optimal ϵ is expected to be dataset-dependent.

The key findings from the experiments are:
1. In the Celeba Dataset (Figure 6), we observe that the AUC score for

both ADA-NAF-1 and ADA-NAF-3 gradually decreases as the regularization
parameter ϵ increases. ADA-NAF-1 demonstrates more stability, maintaining a
relatively consistent AUC score. On the other hand, ADA-NAF-3 experiences a
significant drop in performance, followed by a slight improvement. This pattern
suggests that ADA-NAF-1, with its potentially simpler architecture, is less
affected by increasing regularization, thereby indicating a steadier performance
against the variations in ϵ. Conversely, the initial decline in ADA-NAF-3’s
performance up to a critical point ϵ = 0.3 before it begins to recover slightly,
underscores its vulnerability to stronger regularization effects but also hints at
a possible resilience mechanism that kicks in beyond that point.
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Fig. 6. AUC graphs for the Celeba dataset with different ϵ

2. Bank Additional Dataset (Figure 7). Both shallow and deeper ADA-
NAF variants exhibit a peak AUC at the 0.4 contamination level. Performance
is maximized with mild attention noise injection. The improvement suggests
that low ϵ ratios serve more as useful perturbations rather than obstruction of
meaningful attention patterns. This accords with literature on carefully tuned
noise amplification improving generalization.

Fig. 7. AUC graphs for the Bank Additional dataset with different ϵ

3. Annthyroid Dataset (Figure 8). The model with one layer shows
deterioration with increasing contamination, while the 3-layer model appears
to be more stable, one can note the influence of the architecture and the choice
of pollution level for different datasets.
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Fig. 8. AUC graphs for the Annthyroid dataset with different ϵ

9. Conclusion. This research introduced ADA-NAF - an innovative
neural attention model for semi-supervised anomaly detection adapted from the
Neural Attention Forest framework. We structurally modify NAF to operate as
a reconstructive autoencoder powered by neural attention. Experimental results
demonstrate that ADA-NAF provides a competitive approach rivaling state-of-
the-art techniques over diverse anomaly detection benchmarks. The integrated
architecture allows ADA-NAF to overcome the limitations of standard neural
networks concerning tabular data while benefiting from the representational
richness afforded by deep learning. By tuning neural attention, the model
focuses intrinsically on normal data characteristics. At test time anomalies
result in greater reconstruction errors enabling their detection without explicit
labels. An interesting opportunity for further research includes replacing the
neural network with a full-fledged transformer architecture. By tokenizing
training samples into input sequences, transformers can capture complex data
relationships through self-attention. This can potentially enhance the anomaly
detection accuracy and interpretability of reconstructions provided by the
ADA-NAF model. While our work focuses on adapting NAF for anomaly
detection, the flexibility and power of this architecture suggest potential
applications in various other semi-supervised learning tasks. The unique
combination of Random Forests with neural attention mechanisms in NAF
makes it particularly suitable for scenarios with limited labeled data. In many
real-world applications across different domains, obtaining large amounts of
labeled data can be expensive, time-consuming, or sometimes impossible.
NAF’s ability to leverage both labeled and unlabeled data effectively could
prove valuable in such contexts. The model’s capacity to capture complex
feature interactions and its interpretability through attention weights could be
beneficial in fields such as healthcare, finance, or industrial monitoring, where
understanding the model’s decision-making process is crucial. Furthermore,
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the hierarchical structure of NAF could be advantageous in handling high-
dimensional data or in tasks requiring multi-level feature extraction. While
these potential applications remain to be explored, they highlight the versatility
of NAF architecture and open up exciting avenues for future research beyond
anomaly detection, particularly in semi-supervised learning scenarios. In
conclusion, ADA-NAF contributes an interpretable semi-supervised technique
to complement existing methodologies. The work highlights the importance
of constructing innovative neural attention architectures tailored for anomaly
detection challenges.
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А.Ю. АГЕЕВ, А.В. КОНСТАНТИНОВ, Л.В. УТКИН
ADA-NAF: ПОЛУКОНТРОЛИРУЕМОЕ ОБНАРУЖЕНИЕ

АНОМАЛИЙ НА ОСНОВЕ НЕЙРОННОГО ЛЕСА ВНИМАНИЯ

Агеев А.Ю., Константинов А.В., Уткин Л.В. ADA-NAF: Полуконтролируемое
обнаружение аномалий на основе нейронного леса внимания.

Аннотация. В этом исследовании мы представляем новую модель под названием
ADA-NAF (автоэнкодер обнаружения аномалий с нейронным лесом внимания) для
полуконтролируемого обнаружения аномалий, которая уникальным образом интегрирует
архитектуру нейронного леса внимания (NAF), которая была разработана для объединения
случайного классификатора леса с нейронной сетью, вычисляющей веса внимания
для агрегации прогнозов дерева решений. Ключевая идея ADA-NAF заключается в
включении NAF в структуру автоэнкодера, где он реализует функции компрессора, а
также реконструктора входных векторов. Наш подход представляет несколько технических
достижений. Во-первых, предлагаемая сквозная методология обучения по обычным
данным, которая минимизирует ошибки реконструкции при обучении и оптимизации
нейронных весов внимания для фокусировки на скрытых признаках. Во-вторых, новый
механизм кодирования, который использует иерархическую структуру NAF для захвата
сложных шаблонов данных. В-третьих, адаптивная структура оценки аномалий, которая
объединяет ошибки реконструкции с важностью признаков на основе внимания. Благодаря
обширным экспериментам с различными наборами данных ADA-NAF демонстрирует
превосходную производительность по сравнению с современными методами. Модель
демонстрирует особую силу в обработке многомерных данных и выявлении тонких аномалий,
которые традиционные методы часто не обнаруживают. Наши результаты подтверждают
эффективность и универсальность ADA-NAF как надежного решения для реальных
задач обнаружения аномалий с перспективными приложениями в кибербезопасности,
промышленном мониторинге и диагностике здравоохранения. Эта работа продвигает эту
область, представляя новую архитектуру, которая сочетает в себе интерпретируемость
механизмов внимания с мощными возможностями обучения признакам автоэнкодеров.

Ключевые слова: обнаружение аномалий, случайный лес, механизм внимания,
нейронный лес внимания.
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