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Abstract. Using reinforcement learning to generate the collective behavior of swarm robots
is a common approach. Yet, formulating an appropriate reward function that aligns with specific
objectives remains a significant challenge, particularly as the complexity of tasks increases.
In this paper, we develop a deep inverse reinforcement learning model to uncover the reward
structures that guide autonomous robots in achieving tasks by demonstrations. Deep inverse
reinforcement learning models are particularly well-suited for complex and dynamic environments
where predefined reward functions may be difficult to specify. Our model can generate different
collective behaviors according to the required objectives and effectively copes with continuous
state and action spaces, ensuring a nuanced recovery of reward structures. We tested the model
using E-puck robots in the Webots simulator to solve two tasks: searching for dispersed boxes and
navigation to a predefined position. Receiving rewards depends on demonstrations collected by
an intelligent pre-trained swarm using reinforcement learning act as an expert. The results show
successful recovery of rewards in both segmented and continuous demonstrations for two behaviors
— searching and navigation. By observing the learned behaviors of the swarm by the expert and
proposed model, it is noticeable that the model does not merely clone the expert behavior but
generates its own strategies to achieve the system’s objectives.

Keywords: deep inverse reinforcement learning, reward function, demonstrations, searching

behavior, navigation behavior.

1. Introduction. Swarm robotics (SR) is a self-organized system with
a decentralized control architecture. Robots in SR interact with each other
and their environment to achieve the desired behavior collectively. The key
features of SR systems rely on autonomy and the local perception of individuals.
These features lead to SR with robustness to individual failures, flexibility
with changes in environmental conditions, and scalability for different sizes
of swarm [1 — 4]. Methods of generating the collective behavior of the SR
typically depend on the required task.The methods used to generate collective
behavior in swarm robotics (SR) are closely tailored to the specific tasks the
robots are designed to perform. For example, in search and rescue missions,
SR systems utilize algorithms that optimize area coverage and ensure rapid
localization of targets, such as finding survivors in a collapsed building. In
navigation tasks, SR might employ pathfinding algorithms that enable the
swarm to efficiently move through complex environments, avoiding obstacles
and minimizing travel time [5 — 11]. This concept addresses the task-oriented
nature of SR. It is challenging because of the unpredictable interactions
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within a swarm and the diverse potential applications and environments.
There is no generalized, applicable method for designing desired collective
behavior, making this a key area of research. Many directions addressed
this challenge, like bio-inspired algorithms: Drawing inspiration from nature,
these algorithms emulate behaviors observed in biological systems, such as
the flocking of birds or the foraging patterns of ants. Such models help
in designing decentralized control systems where each robot in the swarm
behaves according to simple rules based on local information and interactions
[12 — 15], modular design: This approach focuses on creating robots with
interchangeable modules, which can dynamically reconfigure based on the
task at hand. Modular design enhances the flexibility and scalability of swarm
robotics systems, allowing for adaptability to different environments and tasks
by rearranging the modules to fit specific needs [16, 17], evolutionary robotics:
This method uses evolutionary algorithms to develop the control systems for
robots, effectively allowing the robots’ behavior to evolve and optimize over
time. It mimics natural selection processes to automatically generate solutions
that are well-adapted to their environment and task, continually improving
as the system encounters new scenarios [18], and machine learning, where
reinforcement learning (RL) provides a robust framework for developing SR
systems with diverse tasks [19]. RL supplies robots with autonomy and the
ability to learn from others and the environment. It can manage the complexity
of designing collective behavior by breaking down the learning process into
simpler, manageable parts, with dynamic adaptation. The RL approach in SR
is represented as a Markov decision process (MDP) as (S, A, R,T,Y ), where
the robot moves from state S to a new state S;;1 by executing an action A. The
essential function in RL is the reward R where robots learn to perform the
actions that maximize the cumulative received rewards during period 7 by
weighting them by factor 7. Thus, the problem of designing R reflects the main
objectives of the given task that correspond to generating the collective behavior
of SR [20]. To generate the collective behavior of SR by RL. Firstly, define the
environment in which multiple agents can coexist. Secondly, representing the
states and actions spaces for policy 7 representation. Then define the reward
function by deciding whether the agents receive rewards based on individual
performance, collective outcomes, or a combination of both. Finally, choose an
appropriate RL algorithm. Choosing R is critical because the reward function
directly shapes the agent’s behavior, guiding it towards desired objectives
and away from undesirable actions. Inverse reinforcement learning (IRL) is a
sophisticated approach that involves learning the underlying reward function
based on the observed behavior of experts. Unlike traditional RL, which directly
learns a policy based on a pre-defined reward formula, IRL provides a deeper
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understanding of complex behaviors by demonstrations instead of explicitly
tuning the reward formula that describes these behaviors. This methodology is
particularly advantageous in swarm robotics, where explicit reward functions
are challenging to formulate due to the interactions and collective dynamics of
robots.

2. Related works. Defining an appropriate reward function requires
mathematical knowledge and a deep understanding of the operating conditions
of the system. Formulating the R equation becomes more complex by increasing
the objectives of the given task. Many methods have been used to formulate
R which corresponds to generating the collective behavior of SR, like sparse
rewards, which are infrequent or only given sparsely throughout the training
phase, where rewards or punishment are given for a specific action like when
each robot near to its fellow or when the swarm reaches the target, and negatives
values for colliding with obstacles [21, 22]. Shaping rewards is another method
that depends on providing additional rewards to guide agents toward the desired
behavior more efficiently. This involves rewarding each action through each
time step during the episode, as opposed to sparse rewards where specific
actions are rewarded. Both of sparse and shaping methods were used to solve
the foraging SR problem. It demonstrates that the shaping method was able
to solve the problem while the sparse one failed. RL was modified with a
hierarchal structure to solve the problem with sparse rewards [23].

To eliminate the need for manually crafting rewards and provide more
structured learning guidance than traditional methods, IRL introduces a
solution to infer the reward function from demonstrations collected by an
expert. So, the agent learns a policy that is similar to or better than the expert
policy based on the inferred reward function. The obtained policy does not
require mathematical experience or a full understanding of the conditions and
operations needed to formulate R, thus avoiding human bias and potential
suboptimality [24].

The main idea behind IRL is to understand what motivates these
behaviors by analyzing the decisions that experts make in various situations.
In IRL, the expert is typically an agent (human or robotic) who performs a
task with high proficiency. The expert’s behavior serves as a benchmark or
model that the IRL algorithm attempts to emulate. By observing the expert,
the IRL aims to deduce the reward structure that guides the expert’s decisions,
assuming that the expert’s actions are optimized to maximize some form
of cumulative reward. Developing an IRL model to be deployed in swarm
robotics is an interesting research area due to its ability to facilitate autonomous
decision-making in complex, dynamic environments. Many researchers have
carried out IRL to generate collective behavior for many missions like [25],
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where maximum entropy IRL is used for each agent to infer the birds’ reward
functions from observed GPS data of pigeon flocks. This approach allowed
them to not only simulate flocking behavior but also infer potential leader-
follower dynamics within the flock. IRL was also used in SR for area coverage
problems, particularly focusing on improving efficiency in unstructured search
and rescue scenarios [26]. The solution involved humans in the loop with
IRL. Human expert demonstrations are used to train SR, allowing them to
learn optimal area coverage strategies. The author in [27] combines IRL with
automatic modular design to generate control software for robot swarms based
on only the demonstrations, without the need for explicitly defined reward and
objective functions. Many methodologies in cited IRL can not handle high-
dimensional, continuous state-action spaces and are capable of generalizing
across different tasks and dynamic environments. This is crucial for developing
adaptive and robust swarm robotic systems that can operate effectively in a
wide range of scenarios. Our paper investigates the ability of IRL to generalize
across different scenarios and automate reward design, making it robust and
efficient, particularly in complex and continuous environments. It introduces an
IRL model able to deal with continuous state and action spaces with simplified
segmented or continuous demonstrations. This model can be generalized to
produce different collective behaviors such as navigation and searching tasks.

3. System Description. This section describes the framework of the
SR by testing two tasks: searching for the boxes represented as light sources
and navigating from initial positions to a predefined position illustrated as a
circular yellow area called (P), as shown in Figure 1.

Fig. 1. SR environment
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The swarm system was implemented in a 3D robot simulator called
Webots where the E-Puck mobile robot was selected to build the swarm. The
dimensions of the workspace were defined as 3 x 3m?, forming a square area
surrounded by four walls. The parameters of E-Puck robots were set as follows:
linear velocity [0,0.25]m/s, angular velocity [—3.14,3.14]rad/s, and light
sensors’ readings corresponded to the light intensity [0,4095].

3.1. RL architecture. The proximal policy optimization algorithm
(PPO) is used for both searching and navigation tasks. Most of the studies
mentioned in the related work section used PPO. It is favored in robotics for its
balance between sample efficiency and computational simplicity, avoiding the
need for complex calculations like those in Trust Region Policy Optimization
(TRPO). PPO’s stability is enhanced via a policy gradient method that
maximizes an objective function by using a clipped surrogate objective to keep
updates stable [28], thus maintaining steady training progress. This makes
PPO an adaptable and robust choice for a variety of applications, particularly
those involving continuous action spaces and environments with complex
dynamics.

The problem is formulated as a MDP represented by the tuple
(S,A,T,R,Y). The state space S has two frames, one for the searching task
contains light sensor readings, and the other frame for the navigation task
includes the distance D, besides the angle 6 between the robot and P. The
action space A includes the velocities of both the left and right motors. The
transition function 7 describes the dynamics of the system. In continuous
states and actions spaces, the transition dynamics function typically cannot
be explicitly defined for every possible state and action due to the infinite
possibilities. PPO optimizes a policy function that outputs a probability
distribution over actions given the current state. The policy is typically
parameterized by a neural network where the weights are adjusted to maximize
the cumulative reward. The reward function R provides feedback based on the
system’s behavior. The main architecture of the PPO has two neural networks,
actor and critic with fully connected layers, as shown in Figure 2. Table 1
presents the parameters of PPO.

3.1.1. Reward formulating. In the searching task, As we mentioned
the PPO receives the light sensor readings as inputs and produces wheel
velocities as outputs, Figure 2. The learned velocities attempt to adjust the
robot’s trajectory toward the light source (boxes). To formulate the equation
of the reward function to motivate robots to steer their directions to the light
sources where the boxes are located, it is better to measure the intensity of the
light between two states at times # — 1 and # and be rewarded if it is increased.
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Fig. 2. PPO architecture
Table 1. PPO hyperparameters

Parameter Value
max training timesteps RL:1000000, IRL-RL:250000
max timesteps per episode 800
state space dimension Searching:8, Navigation:2
action space dimension 2
discount factor (y) 0.99
PPO epsilon clip 0.2
PPO K epochs 80
optimizer learning rate actor 0.0003
optimizer learning rate critic 0.001
Layers size input,128,64,32,output

An additional value 1.1 is given when the robot finds the box, as in
Equations 1 and 2. Notably, both shaping and sparse methods were used.

1.1 if LS > FindThresholdsearehing
Foox = { 1.1 if LY > FindThresholdsearcing - (1)

0 otherwise
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LSy " —18Y)) + (Lsi ) — LsY))
2

R(t)searching = =+ Tboxs (2)

where:
R(t)searching — Reward value at each time step 7.

LSg) , LSgt) — The current readings of light sensors 0 and 7, respectively, at time

t.

LS((;_I) ,LSgt_l) — The previous readings of light sensors 0 and 7, respectively,
attimer — 1.

FindThresholdsearching — The threshold value for the light sensor where the box
is found.

rvox — The additional reward when the robot finds the box.

For the navigation task, the inputs of the PPO network are the robot’s
current distance and angle relative to P, where the outputs modify the wheel
velocities to navigate P. Additional reward is sparse for successfully reaching
P, as in Equation 3, incorporating the shaping method to speed up the learning
process, as in Equation 4.

~J0.1 if Dy < FindThresholdpayigation 3)
o otherwise ’
cos(6
R(t)navigation = (Dt—l - Dt) +rp+ 10(0(;) 5 (4)

rp — The additional reward when the robot reaches P.
FindThresholdpayigation — The robot is inside P.

Dy — The distance between the robot and P at time t.
Dy — The distance between the robot and P at time t-1.
6; — The angle between the robot and P.

3.2. IRL-RL model. In this approach, instead of formulating the
reward mathematically train RL to find the policy. IRL is implemented to
infer the reward by demonstrations collected via a pre-trained swarm. RL used
them to generate the policy to obtain the searching and navigation behaviors,
as in Figure 3.

Informatics and Automation. 2024. Vol. 23 No. 5. ISSN 2713-3192 (print) 1491
ISSN 2713-3206 (online) www.ia.spcras.ru



POBOTOTEXHUKA, ABTOMATU3ALIMA 1 CUCTEMBI YIIPABJIEHUA

R

'
yes
495=1042=N-

episodes<500x102,

L

A 4

Data from training Expert data

Feature extractor 4

Deep-IRL
calculate loss and
updaet weights

weights

l-epif = ",
N-episodes=500x1042 Reward neural

network

Current policy
match
expert policy

Send the collected
data to the data
loader and stop PPO

—

Fig. 3. IRL-RL model

IRL components:

Data loader: it is a container for the data that flows from the expert
and training process. Expert data is collected by an expert pre-trained model
while training data is collected during the PPO training process. Both of them
contain only state frames with flags without actions. The flags are indicators
of completing the task like finding a box in the searching task or reaching P
in the navigation. The model is able to cope with two types segmented and
continuous states. Both types of states were tested in the results section. In
segmented mode, the sensors’ readings after normalization are divided into
five ranges between 0 and 1, each corresponding to a value.
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Features extractor: the given Table 2 shows the types of data and
functions that are used on the received data from the data loader. The received
data is raw, where the values of the light sensors are measured in a range of
[0,4095]. While the distance D is in the range of [0,3]m and the angle 0 is
[~ 7, m|rad, the purpose of ¢ (s) in Equations 5, and 6 is to convert raw states
S into a feature vector which is more suitable as input for the model. The shift
function is applied to the states after normalization to obtain the valuesin ¢ — 1.
These values are used to produce the correlation between states to encourage
the R network to perceive the directions of changes in states.

Table 2. Features Extractor Input and Output for Searching and Navigation Tasks

Input of features extractor (from

Task the data loader)

Output of features extractor

Normalized [Lsg’w, LS((;)’ LS§t71)7
L5\"], flag (Finding a box)
Normalized [D®D, DO 9®D 907,
flag (Reaching P)

Searching LSy, LSV, flag (Finding a box)

Navigation DO, 9", flag (Reaching P)

o(s): S —[0,1], (5)

_ MaXOutpu[ - Manutput

9(s) =

- (S — MaxValue) + MaXOutputa (6)
MaXValue - Manalue

Maxvane — the upper value in the raw range of states, for example, in the
searching task equals 4095 according to the light sensor reading
Miny,,. — the lower value in the raw range of states, for example, in the
searching task equals 0.
Maxoupu — the upper value in the output range of ¢(s), equals 1 as in
Equation 5.
Mingygput — the lower value in the output range of ¢ (s), equals 0 as in Equation 5.
Deep IRL — the backpropagation process of the reward network is
performed by calculating the losses according to Equation 7, which guarantees
updating the weights of the reward neural network. This objective function
is the binary cross-entropy loss function applied for distinguishing between
expert and training rewards. This loss function is designed to penalize the
deviation of the predicted rewards from the "true" rewards indicated by the
expert’s behavior.
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loss = —log(sigmoid (Rexpert)) — (1 — log(sigmoid(Riraining))) (7)

Rexpert — the output of the reward neural network for states from the expert.
Riraining — the output of the reward neural network for collected states from the
training process.

Reward network — The purpose of the reward neural network is to
approximate the reward function. This is done by passing the feature vector
through the neural network. Then, producing a scalar reward value as an output.
It is constructed as fully connected layers of length( feature — vectors) x 15 x
1FC, where the length of feature vectors in the proposed tasks is 5, as in
Table 2.

4. Results and discussion. We have focused on examining the reward
that affects swarm behavior in a simulated environment, demonstrating how
IRL can approximate the reward function without the need for mathematical
formalities. Our implementation involved two tasks: searching for boxes in
continuous RL and segmented features, and navigation task to a pre-defined
position known as P also in continuous RL but in continuous features. The
swarm’s performance was evaluated by comparing the rewards between the
IRL-based model and an expert-pre-trained RL model, demonstrating the
ability to generate behavior to achieve the required tasks. Finally, we analyze
the generated behavior of the swarm under both models. Choosing the features
plays a major role in recovering a correct reward function. They differ based on
the defined problem and objective function of the swarm system as in Table 2.
This table illustrates the differences in the chosen features for searching and
navigation behavior. In addition, consider the readings in the time step ¢ and
t — 1 to make the R network recognize the difference in the light intensity for
the searching task or change in the distance in the navigation task. Using a
deep neural network to represent R with binary cross-entropy loss function
makes the model able to handle continuous environments. So, in our models,
we recovered reward in the continuous and segmented mode of the IRL model
to generate the policy in RL with continuous states and action spaces.

4.1. Searching task. In this task, the reward structure is related to the
change in the intensity of light detected by sensors. The reward increases as
the robots move towards stronger light intensity, collecting a higher reward
once the boxes are located.

The training process required three rounds to recover the reward which
generates a successful behavior as follows.
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In the first round, the reward neural network was initially configured
with arbitrary weights, denoted as @y. So, RL learned a stochastic policy 7.
Based on this policy, data was collected and forwarded to the data loader. By
harnessing both expert and collected data, the IRL part conducted training
on the reward network, resulting in an update to the weights, yielding ;.
Subsequently, the RL part in Figure 2 trained again to generate its policy 7; by
the new weights of reward. The iterative process finished with the weights w,,
so the robots trained to learn policy 72 achieved the required task as shown
in Figure 4. The reward function in the expert-RL model, indicated by a red
line, maximizes the reward as the robot approaches the light source (box) and
maintains peak values upon reaching it. In contrast, the inferred reward by
the IRL-RL model, represented by a blue line, captures the increasing light
intensity in a segmented fashion, echoing the RL model’s behavior but with
discrete transitions due to the segmented mode of features. Thus,the data is
segmented into specific ranges, such as states from 0 to 0.2 representing darker
areas rewarded uniformly.

Normalized IRL and RL Rewards Over 3 Episods
1,0 e IRL Rewards
RL Rewards

0.8

Reward
1)
Y

0.0

0 500 1000 1500 2000 2500
TimeStep

Fig. 4. Normalized IRL and RL rewards over 3 episodes for w2-searching task

As shown in Figure 5, the IRL-RL model effectively reconstructs the
reward function, when sensor readings LSO and LS7 in the O to 0.2 range
result in minimal rewards, increasing as the robot transitions to the 0.2-0.4
range — the reward spikes in the 0.8-1 range, indicating the robot’s proximity
to the box. The comparative visualization of the reward functions from the
expert RL model (pre-trained) and the IRL-RL model highlights differences,
with the darker blue associated with the RL model. Nonetheless, a crucial
observation is the shared gradient pattern between the models, suggesting a
direct correlation of rewards with incremental light intensity, affirming that the
robots have learned to search and find boxes, thereby validating the designed

Informatics and Automation. 2024. Vol. 23 No. 5. ISSN 2713-3192 (print) 1495
ISSN 2713-3206 (online) www.ia.spcras.ru



POBOTOTEXHUKA, ABTOMATU3ALIMA 1 CUCTEMBI YIIPABJIEHUA

behavior. The IRL-RL model’s ability to mimic the decision-making strategy
of the pre-trained robot.

Interpolatad IRL Reward Interpolatad RL Reward

-0.9

"N

0.0 0.2

X 10
0.4 1S0 0.6 0.8 1.0 0.0 0.2 04 0.6 .

LSo
Fig. 5. Heat map of the true reward (right) and the recovered reward (left) for the

searching task

For the robot’s behavior, the bar chart in Figure 6 highlights a successful
behavior of the IRL-RL model compared to pre-trained expert RL across ten
incremental collected boxes, The IRL-RL model generates a behavior that
enables the robots to collect the boxes in a round-trip manner. However, it is
notable that there are differences in the collecting box’s times which reflect
different behaviors. This means the IRL-RL model does not clone the behavior
or actions of RL instead, it learns how to achieve the task with its own generated
behavior. This suggests that IRL successfully learns the complex reward
structures governing task completion rather than merely copying actions.

Times for Incremental Boxes by Method
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Fig. 6. Swarm searching behavior by IRL and RL
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4.2. Navigation task. The same process with the same number of
rounds was applied to the navigation task. Initially, the reward neural network
was configured with random weights, labeled as @0, leading to the production
of a stochastic policy 70 from which the RL model began its learning process.
After the first round, the collected data was used to train the reward network,
updating the weights to @1, which in turn allowed the RL model to refine
its policy to 1. The process concluded after a second round of adjustments,
resulting in final weights @2, enabling the model to successfully execute the
required navigation tasks as depicted as in Figure 7.

Normalized IRL and RL Rewards Over 3 Episods
o [RL Rewards

RL Rewards / /

1.0

Reward o
=%

=
=
=

B R i

0.0 — ==

0 500 1000 Timestep 1500 2000 2500

Fig. 7. Normalized IRL and RL rewards over 3 episodes for w2- Navigation task

Figure 8 illustrates both the interpolated IRL reward and interpolated
RL reward models under these conditions. It shows a gradient of colors from
red to blue, indicating varying reward intensities based on the robot’s angle
and distance to the target.

High rewards are shown in red, corresponding to smaller angles and
distances — indicative of the robot directly facing and being close to the target.
As the angle increases or the distance increases, the reward diminishes, as
shown by the gradient transitioning to blue. Unlike the search, there is no
segmentation into discrete state ranges. The continuous nature of the data
allows for a smoother gradient in the visual representation and a more nuanced
adjustment of the reward based on the robot’s proximity and alignment with
the target.

The similarities between the paths in both graphs in Figure 9 indicate
that the IRL has effectively learned from the RL data, closely replicating the
expert RL’s behavior. This suggests the successful application of IRL where
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the algorithm has inferred the strategies and decisions that the RL considered
optimal.

Interpolated RL Reward

Interpolated IRL Reward

-2700 - 1.44

-1.28

-2250 0.8]
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450 02 -032
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0.0
0.0

0.2 04 0.8 1.0 . 0.2 04 0.8 1.0

.06 o
Distance Distance

Fig. 8. Heat map of the true reward (right) and the recovered reward (left) for the
Navigation task

Paths from IRL and RL Data
IRL Paths RL Paths
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-0.75 -0.75

-075  -0.50  -0.25 0.00 025 050 075 -0.75  -050  -0.25 0.00 025 050 0.75

Fig. 9. Robots navigation paths

5. Conclusion. This paper presented an advanced model employing
IRL to effectively recover the reward function by demonstrations of expert
behaviors. Instead of directly learning the behavior, IRL seeks to understand
the reasons behind specific actions or strategies by inferring the reward to
solve the task by generating its own behavior. It eliminates the need for
extensive manual tuning of reward functions and facilitates a more intuitive
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setup via demonstration-based learning. The proposed IRL-RL model has the
ability to handle continuous state spaces and dynamic environments to deal
with continuous RL problems due to employing a deep neural network for
representing R, in addition, to recovering reward function based on two types of
data that flow from data loader: segmented features and continous features for
naunce stratgies. This model was tested across two tasks, navigating towards
a predefined position and searching for specific objects within a simulated
swarm robot environment. It demonstrated its robust capability to infer and
adapt the reward structures essential for guiding autonomous robotic swarms
to accomplish tasks. Moreover, our findings highlight the potential of the
proposed model to generalize across different scenarios. For future directions,
this model will be developed to achieve composed and more complex tasks
like generating foraging collective behaviors and aggregation behavior.
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A. UCKAHJIAP, A. XAMMY]I, b. KOBAY
CKPBITBHIN CMBICJI: JERKOIUPOBKA POEBOI'O IOBEJAEHU A
POBOTOB C ITIOMOIIBIO INTYBOKOTI'O OBPATHOI'O
OBYYEHNUA C IOJAKPEIIJIEHUEM

Hcekanoap A., Xammyo A., Kosau B. CKPBITBIN CMBICJI: JeKOAHPOBKA POEBOr0 MOBEJeHIs
POGOTOB € MOMOIIBIO ITyOOKOr0 00PAaTHOTO 00yYeHNs C MOAKPeNJIeHneM.

Annoramusi. Vcrionp3oBaHue 00ydeHust ¢ MOAKPEIUICHHEM VIS CO3/IaHHsI KOJUIEKTUBHOTO
MOBEJCHUSI POEBBIX POOOTOB SIBJISIETCS PACIPOCTPAHEHHBIM IOAXONOM. TeM He MeHee,
(opmynmpoBaHue cOOTBETCTBYIOIIECH (DYHKIMKM BO3HArpakACHHUs, KOTOpask COOTBETCTBOBAJIA
Obl KOHKPETHBIM LIEJISIM, OCTAeTCsI CePhe3HON MPOOJIEeMOii, 0OCOOEHHO 10 Mepe YBEIMYeHUs
CIIOKHOCTH 3a7a4. B 97101 cTatbhe Mbl pa3padaThiBaeM MOJEJb [IIyOOKOro 0OpaTHOro 00y4YeHus ¢
HOZIKPEIJIEHHEM, YTOOBI PACKPBITh CTPYKTYPbI BO3HAIPAKACHHUSI, KOTOPHIE TOMOTAI0T aBTOHOMHbBIM
poOOTaM BBINOJHATH 3a7a4l MOCPEJCTBOM JEMOHCTpauuid. Mozjem nry6oKoro oOpaTHOro
00y4eHHs ¢ HOAKPEMIEHHEM OCOOEHHO XOPOIIO MOAXOAST VIS CIOKHBIX U AMHAMUYHBIX Cpe, Ie
MOJKeET OBITh CIIOKHO YKa3aThb 3apaHee onpejie/ieHHble (DyHKIMY Bo3HarpaxaeHus. Hamra Moners
MOXKET IeHepUpPOBATh PA3IMYHOE KOJUIEKTUBHOE IOBEJEHHE B COOTBETCTBHU C TPeOyeMbIMU
HensaMu 1 3G QEKTUBHO CIPABIISETCs C HEMPEPHIBHBIMY IPOCTPAHCTBAMK COCTOSIHUM U JICHCTBHIA,
obecrieynBas JeTAIbHOE BOCCTAHOBJICHHUE CTPYKTYpP BO3HArpakAeHusi. Mbl MPOTECTHPOBAIIM
MozeJb ¢ roMoIpio podotos E-puck B cumysitope Webots 1151 penieHust ABYX 3a7a4: HOKUCKa
paccpeIoOTOYEeHHbIX KOPOOOK M HABUTALMK K 331aHHOM no3unuu. TlonydeHre Bo3HarpakaeHus
3aBUCHUT OT AEMOHCTPALWi{, COOPAHHBIX HHTEJUICKTYaJIbHBIM IIPEIBAPUTEILHO 00y YECHHBIM POEM,
HCIIONb3YIOIMM O0y4YeHHe ¢ MOJKPEeIUIeHHEM B KayeCTBe dKCrepTa. Pe3ysbTaThl OKa3bIBAIOT
YCIIEIIHOE TIOTyYeHHE BO3HATPaXACHUs KAaK B CErMEHTHPOBAHHOM, Tak M B HENpPEpPHIBHOM
JEMOHCTpALM [BYX THIIOB MOBEJEHHMsI — IMOKMCKa W HaBurauuu. HaGimopast 3a M3yveHHbIM
HOBEICHUEM POsl KCIIEPTOM H MPEJUIOKEHHO MOJIEIIBIO, MOXKHO 3aMETUTb, YTO MOJIEJIb HE IPOCTO
KJIOHHPYET ITOBEICHHE SKCIIEPTa, HO TeHEPUPYET CBOM COOCTBEHHbIE CTPATErHH IS AOCTHXEHHSI
1eJIel CUCTEMBI.

KuroueBble ciioBa: obpatHoe oOydeHHe ¢ HOAKpEIUIeHneM, (pyHKIUSI BO3HArPAKICHNU,
J€MOHCTpALMH, TIOUCKOBOE ITOBE/ICHHE, HABUTALIMOHHOE TTOBE/ICHHE.
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