
 DOI 10.15622/ia.23.6.9

M. ELLAKKIYA, T. RAVI, S. PANNEER AROKIARAJ
RUZICKA INDEXIVE THROTTLED DEEP NEURAL LEARNING
FOR RESOURCE-EFFICIENT LOAD BALANCING IN A CLOUD

ENVIRONMENT

Ellakkiya M., Ravi T., Panneer Arokiaraj S. Ruzicka Indexive Throttled Deep Neural
Learning for Resource-Efficient Load Balancing in a Cloud Environment.

Abstract. Cloud Computing (CC) is a prominent technology that permits users as well as
organizations to access services based on their requirements. This computing method presents
storage, deployment platforms, as well as suitable access to web services over the internet.
Load balancing is a crucial factor for optimizing computing and storage. It aims to dispense
workload across every virtual machine in a reasonable manner. Several load balancing
techniques have been conventionally developed and are available in the literature. However,
achieving efficient load balancing with minimal makespan and improved throughput remains a
challenging issue. To enhance load balancing efficiency, a novel technique called Ruzicka
Indexive Throttle Load Balanced Deep Neural Learning (RITLBDNL) is designed. The
primary objective of RITLBDNL is to enhance throughput and minimize the makespan in the
cloud. In the RITLBDNL technique, a deep neural learning model contains one input layer,
two hidden layers, as well as one output layer to enhance load balancing performance. In the
input layer, the number of cloud user tasks is collected and sent to hidden layer 1. In that layer,
the load balancer in the cloud server analyzes the virtual machine resource status depending on
energy, bandwidth, memory, and CPU using the Ruzicka Similarity Index. Then, it is classified
VMs as overloaded, less loaded, or balanced. The analysis results are then transmitted to
hidden layer 2, where Throttled Load Balancing is performed to dispense the workload of
weighty loaded virtual machines to minimum loaded ones. The cloud server efficiently
balances the workload between the virtual machines in higher throughput and lower response
time and makespan for handling a huge number of incoming tasks. To evaluate experiments,
the proposed technique is compared with other existing load balancing methods. The result
shows that the proposed RITLBDNL provides better performance of higher load balancing
efficiency of 7%, throughput of 46% lesser makespan of 41%, and response time of 28% than
compared to conventional methods.

Keywords: cloud computing, load balancing, deep learning, Ruzicka similarity index,
throttled load balancing.

1. Introduction. CC is a paradigm that includes distributing services
and resources more than the internet. Load balancing (LB) in CC is
a significant aspect that is a pivotal task in optimizing resource utilization,
enhancing performance, and ensuring high availability of applications and
services. As cloud environments consist of multiple servers and resources,
distributing incoming user requests efficiently among virtual machines
becomes essential to prevent the overloading of any single machine in the
cloud server. This distribution of workload helps in achieving optimal
resource consumption, enhancing the efficiency of applications.

Task Scheduling- DT (TS-DT) method was developed [1] to
distribute and execute tasks within an application. The algorithm

1823Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

successfully enhances load balancing and reduces makespan but it failed in
achieving energy-aware load balancing with minimal response time.
A P2BED-C was developed in [2] to minimize energy consumption.
However, the efficiency of the method was not improved.

A Reinforcement Learning (RL) model was developed in [3]
to optimize cloud resource utilization for providing the best Quality of
Service (QoS). However, the makespan was not efficiently reduced. A
Dynamic and Resource-Aware Load Balancing technique was introduced
[4] to enhance throughput and reduce makespan. However, a resource-
aware scheduling approach was not employed for the distribution of tasks
on virtual machines (VMs).

The Predictive Priority-based Modified Heterogeneous algorithm
was designed in [5] to achieve efficient and dynamic resource provisioning
for end user's requirements. However, it did not implement a more effective
resource provisioning scheme for end-users. The Bio-Inspired Improved
Lion Optimization method was designed in [6], to address load balancing
issues through enhancing throughput as well as reducing migration time.
However, the performance of efficiency remained unaddressed.

A content-aware machine learning technique was introduced in [7]
for enhancing load balancing, leading to improved throughput and
minimized response time. However, failed to reduce migration time.
Dynamic load balancing method was developed in [8] by Q-learning for
resource allocation, resource accessibility, and consideration of user
preferences with the aim of minimizing response time and resource
consumption. However, it did not achieve higher efficiency in
a multitasking environment.

In [9], a multi-objective task scheduling technique was designed
with the aim of optimizing scheduling, increasing throughput, as well as
reducing both makespan and resource utilization. However, it did not
address the minimization of response time. A dynamic virtual machine
consolidation method was introduced in [10] for LB to mitigate tradeoffs
among energy utilization as well as time complexity.

1.1. Contributions in this article are as follows. The main
contributions of the paper as given below.

To enhance load balancing efficiency, the RITLBDNL technique has
been developed by Deep Neural Learning and Throttled Load Balancing.

The RITLBDNL technique utilizes the Ruzicka Similarity Index to
analyze incoming user tasks and determine the resource status of VMs.

The Throttled Load Balancing process is applied to deep neural
learning for task migration from heavily loaded virtual machines to less
loaded virtual machines with higher efficiency.

1824 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

Finally, comprehensive and comparative experiments have been
conducted to perform quantitative analysis using various performance
metrics.

1.2. Paper organization. The remainder of this article is organized
into dissimilar sections: Section 2 explains the literature survey. Section 3
presents the RITLBDNL method. Section 4 details the experimental
analysis and describes the dataset. Section 5 gives a performance
assessment of the proposed algorithm in comparison to conventional
techniques. At last, section 6 gives conclusions of the paper.

2. Literature survey. Load Balancing Protocol was developed
in [11] for CC with the aim of minimizing Makespan as well as throughput
of VM utilization. Long Short-Term Memory Networks (LSTM) Machine
Learning (ML) algorithm was designed in [12] for enhancing load
balancing through optimized resource allocation. However, it did not
succeed in enhancing the system performance of LB. An integrated
optimization algorithm was developed in [13] to make an effective load
balancing system that guarantees resource utilization and minimizes task
response time.

Component-based throttled load balancing method was introduced
in [14], but it failed to consider additional parameters for ensuring the
optimal performance of load balancing algorithms. The Receiver-Initiated
Deadline-Aware LB approach was developed in [15], and aimed to facilitate
migration of incoming tasks to suitable virtual machines. However, this
approach was not employed for scientific workflow applications for diverse
QoS parameters.

An Action-Based Load Balancing scheme was designed [16] with
the aim of reducing makespan and optimizing resource utilization.
However, it failed to address resource allocation and management concepts
within a cloud data center. A new resource optimization framework was
introduced in [17] specifically designed for achieving load balancing with
minimal resource utilization. An optimal load balancing method was
developed [18], which effectively balances the load on cloud servers.

A re-modified throttled algorithm was developed in [19] to minimize
the risk of load imbalance by considering the availability of VMs. However,
it failed to address the issues related to increasing the efficiency of the
algorithm. A load balancing approach based on renewable energy was
developed in [20] to optimize interactive task allocation, aiming to reduce
energy costs.

Modified honeybee behavior load balancing (HBB-LB) was
introduced in [21] to secure the cloud system. However, the system
performance was not enhanced. The Sine Cosine-based Elephant Herding

1825Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

Optimization (SCEHO) algorithm was combined in [22] by Improved
Particle Swarm Optimization (IPSO). Task scheduling behavior was
improved but, throughput was not increased.

The two-stage genetic mechanism was utilized in [23] to monitor
and manage VMH. But, it failed to minimize the time. A deep load balancer
was introduced in [24] to allocate resources with less delay. Nevertheless, it
failed to enhance throughput. Improved Lion Optimization (ILO) with Min-
Max Algorithm was developed in [25] to identify the optimum solution.
However, the load balancing efficiency was not sufficient.

3. Proposal methodology. In cloud computing, dynamically
provisioning the resources for applications is a key and challenging task.
However, cloud providers face resource management concerns due to
inconsistent workloads in heterogeneous environments. The cloud service
provider focuses on resource consumption, while the cloud user aims to
achieve a shorter makespan time. Therefore, achieving load balancing is a
significant parameter for effective task execution to obtain optimal
consumption of cloud resources. A new RITLBDNL method is developed
for efficient load balancing in a cloud computing environment. Figure 1
depicts a diagram of the RITLBDNL method for efficient LB in the cloud.

Fig. 1. Architecture diagram of the proposed RITLBDNL technique

1826 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

Figure 1 demonstrates the RITLBDNL technique uses the deep
learning concept for efficient load balancing in the cloud. The four
components as cloud user (𝑈𝑈), cloud server (𝐶𝐶𝐶𝐶), load balancer (𝐿𝐿𝐿𝐿), and
virtual machines (𝑉𝑉𝑚𝑚) included in the above figure. The working mechanism
of the RITLBDNL model uses deep neural learning with several layers. The
technique collects the number of cloud user requests or tasks. Ruzicka
Similarity Index is utilized in hidden layer 1 to examine the virtual machine
resource status. In hidden layer 2, the workload from heavily loaded virtual
machines to less loaded ones is distributed to perform task migration by
Throttled Load Balancing. In this way, throughput is improved and
response time and makespan are minimized.

3.1. System model. It involves four key entities namely cloud
user (𝑈𝑈), cloud server (𝐶𝐶𝐶𝐶), load balancer (𝐿𝐿𝐿𝐿), and virtual machines (𝑉𝑉𝑚𝑚).
Initially, the cloud user ‘𝑈𝑈’ submits numerous tasks, denoted as
𝑇𝑇 = {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛}, to the cloud server (CS). 𝐶𝐶𝐶𝐶 receives these tasks as of
𝑈𝑈. Subsequently, the load balancer within the cloud server analyzes and
determines the status of virtual machines, categorizing them as minimum
loaded, overloaded, as well as balanced load capacity. Once VM statuses
are identified, the load balancer executes task migration using throttled load
balancing with higher efficiency.

Fig. 2. Overview model of the client-server system

In above Figure 2, the client-server model includes the Server or

Client. The client-server model explains the communication among two
computing entities over a network. A client is a program that creates
requests to a server. A server is a program that responds to those requests.

3.2. Ruzicka Indexive Throttle Load Balanced Deep Neural
Learning. Deep Learning (DL) is a type of ML, which focuses on the
development, and training of Artificial Neural Network (ANN) to perform
some process. The term "deep" refers to the use of Deep Neural Networks
(DNNs), which contain numerous hidden layers among input as well as
output layers. These networks are referred to as DNNs or DL models.

1827Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

Fig. 3. Structures of the deep neural networks

Figure 3 depicts the structure of DNNs. The DNN is a fully

connected feed-forward artificial neural network and it generates a set of
outputs from a set of inputs. A DNN is constructed with three main layers
such as input, hidden (i.e. middle), and output layers. The input and output
layers are always single layers, whereas the middle layer includes two
sublayers for analyzing the given input. Each layer is typically composed of
small individual units called artificial neurons or nodes. The artificial
neuron has the ability to process the given weighted inputs and applies an
activation function and forward output to other nodes in the network. An
input to an artificial neuron is a number of virtual machines (𝑉𝑉𝑉𝑉𝑖𝑖). The
neuron in one layer is fully connected to the neuron in another layer.

Each connection between neurons has an associated weight, which
determines the strength of the connection. It also has an associated bias. The
equation for a single neuron is expressed mathematically as follows:

𝑌𝑌 = F [S], (1)

S=∑ (𝑉𝑉𝑉𝑉𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖𝑖𝑖) + 𝑄𝑄𝑛𝑛
𝑖𝑖=1 , (2)

where 𝑌𝑌 indicates an output of the neuron, 𝑤𝑤𝑖𝑖𝑖𝑖 denotes the weight of the
connection between the 𝑖𝑖𝑡𝑡ℎ neuron in the previous layer and the 𝑗𝑗𝑡𝑡ℎ neuron
in the current layer, 𝑉𝑉𝑉𝑉𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖𝑖𝑖 denotes a product of the weight (𝑤𝑤𝑖𝑖𝑖𝑖)
associated with the connection between the 𝑖𝑖𝑡𝑡ℎ neuron in the previous layer
and 𝑗𝑗𝑡𝑡ℎ neuron in the current layer, and the input
(𝑉𝑉𝑉𝑉𝑖𝑖 i. 𝑒𝑒 𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑉𝑉𝑣𝑣𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑒𝑒) from the 𝑖𝑖𝑡𝑡ℎ neuron in the previous layer. From

1828 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

(2), ‘𝑄𝑄‘ indicates a bias term that stores the numeric value as one, F denotes
a sigmoid activation function used to determine whether a neuron is
activated or not, it suggests that the neuron output is binary, typically
representing a binary classification decision (activated or not activated).

F [S] = 1
1+exp(−S)

, (3)

where F [S]neuron's output with sigmoid activation is passed to the next
layer of neurons

The input is transferred to a hidden layer where the resource
availability of a virtual machine is determined to facilitate efficient load
balancing.

𝑅𝑅𝑅𝑅 (𝑉𝑉𝑉𝑉𝑖𝑖) = {𝑀𝑀𝑒𝑒𝑉𝑉𝑐𝑐 ,𝐿𝐿𝑣𝑣𝐵𝐵𝐶𝐶 ,𝐸𝐸𝐶𝐶 ,𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑡𝑡}, (4)

where 𝑅𝑅𝑅𝑅 (𝑉𝑉𝑉𝑉𝑖𝑖) denotes a resource's availability of the virtual machine that
includes a memory capacity ‘𝑀𝑀𝑒𝑒𝑉𝑉𝑐𝑐’, bandwidth capacity ‘𝐿𝐿𝑣𝑣𝐵𝐵𝐶𝐶’, energy
capacity ‘𝐸𝐸𝐶𝐶’ and CPU utilization ‘𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑡𝑡’.

Initially, the memory capacity is determined by calculating the
variance among total available memory as well as utilized memory.

𝑀𝑀𝑒𝑒𝑉𝑉𝑐𝑐 = 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑚𝑚𝑐𝑐 − 𝐶𝐶𝑇𝑇𝑖𝑖𝑀𝑀𝑀𝑀𝑚𝑚𝑐𝑐 , (5)

where 𝑀𝑀𝑒𝑒𝑉𝑉𝑐𝑐indicates the memory capacity of the VM and
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑚𝑚𝑐𝑐 indicates the total memory capacity, 𝐶𝐶𝑇𝑇𝑖𝑖𝑀𝑀𝑀𝑀𝑚𝑚𝑐𝑐 represents the
utilized memory capacity. Variation between the total memory capacity and
the utilized memory capacity measurement is employed to assess the
present memory status of the VM.

The bandwidth of a virtual machine denotes its capability to handle
the maximum amount of data, typically measured in Mbps (megabits per
second). The current status of bandwidth is determined through
mathematical calculations.

𝐿𝐿𝑣𝑣𝐵𝐵𝐶𝐶 = 𝐿𝐿𝑣𝑣𝑉𝑉𝑀𝑀(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − 𝐿𝐿𝑣𝑣𝑉𝑉𝑀𝑀 (𝑐𝑐𝑡𝑡𝑛𝑛), (6)

where 𝐿𝐿𝑣𝑣𝐵𝐵𝐶𝐶 denotes the bandwidth capacity, 𝐿𝐿𝑣𝑣𝑉𝑉𝑀𝑀(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) indicates the total
bandwidth, and 𝐿𝐿𝑣𝑣𝑉𝑉𝑀𝑀 (𝑐𝑐𝑡𝑡𝑛𝑛) represents the utilized bandwidth. Depending on
the above-said metrics, the current status of the bandwidth capacity is
determined.

1829Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

The total energy consumption is calculated depending on the energy
usage of the VM. Energy utilization is measured in kWh. Thus, the energy
capacity of the virtual machine is determined as follows:

𝐸𝐸𝐶𝐶 = [𝑇𝑇𝑇𝑇𝑣𝑣𝐸𝐸] − [𝐶𝐶𝑇𝑇𝑖𝑖𝐸𝐸], (7)

where 𝐸𝐸𝐶𝐶 represents the energy capacity, 𝑇𝑇𝑇𝑇𝑣𝑣𝐸𝐸 indicates the total
energy, 𝐶𝐶𝑇𝑇𝑖𝑖𝐸𝐸 denotes the consumed energy.

The CPU utilization time of the VM is computed mathematically by
calculating the variance between the total time and the time spent
processing specific tasks. This calculation helps to assess the efficiency and
resource consumption of the virtual machine during the execution of its
assigned workload.

𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑡𝑡 = [𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐] − [𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐], (8)

where 𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑡𝑡 denotes the CPU time, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 indicates the total time and
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐symbolizes the consumed time of VM.

The proposed RITLBDNL technique finds the resource availability
of a virtual machine based on the energy, bandwidth, memory, and CPU
through the similarity measure. Ruzicka Similarity Index is employed for
discovering the similarity between two sets. It provides a range from 0 to 1.
Ruzicka Similarity Index is used to analyze the VM resource status as well
as categorize VM as 𝑂𝑂𝐿𝐿, minimum loaded and 𝐿𝐿𝐿𝐿. The mathematical
formula for calculating the similarity between the nodes is shown below

𝛽𝛽 =
[𝑅𝑅𝑅𝑅 (𝑉𝑉𝑉𝑉𝑖𝑖) ∩ 𝑇𝑇)]

∑𝑅𝑅𝑅𝑅 (𝑉𝑉𝑉𝑉𝑖𝑖) + ∑𝑇𝑇 − [𝑅𝑅𝑅𝑅 (𝑉𝑉𝑉𝑉𝑖𝑖) ∩ 𝑇𝑇)]
, (9)

where ‘𝛽𝛽’ denotes a Ruzicka similarity coefficient, 𝑅𝑅𝑅𝑅 (𝑉𝑉𝑉𝑉𝑖𝑖) denotes the
resource availability of the virtual machine and 𝑇𝑇 indicates the threshold
(i.e., 0.5),𝑅𝑅𝑅𝑅 (𝑉𝑉𝑉𝑉𝑖𝑖) ∩ 𝑇𝑇 denotes a mutual dependence between the
resource availability and threshold. The coefficient (𝛽𝛽) provides the output
ranges between 0 and 1. Likewise, similarities of all the VMs are computed
based on the energy, bandwidth, and memory, and CPU using the statistic
similarity coefficient

𝛽𝛽 = �
< 0.5, 𝑈𝑈𝐿𝐿
= 0.5 , 𝐿𝐿𝐿𝐿
> 0.5, 𝑂𝑂𝐿𝐿

, (10)

1830 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

where 𝛽𝛽 denotes the output of coefficient. Depend on coefficient outcome,
LB determines over loaded (𝑂𝑂𝐿𝐿) , under loaded (𝑈𝑈𝐿𝐿) and balanced load
(𝐿𝐿𝐿𝐿).

Throttled Load Balancing refers to a type of load balancing
mechanism that includes throttling. Load balancing is the process of
dispensing network traffic or calculating workload across numerous
resources to guarantee no one, virtual node is overloaded. Throttling, in this
context, involves controlling the rate at which certain requests are processed
to manage the load on the system.

Fig. 4. Flow Process of throttled load balancing

Figure 4 depicts the flow process of throttled load balancing that

contains cloud server, LB and several Vm Vm1, Vm2, Vm3, … . Vmn. Initially, a
number of tasks are sent to 𝐶𝐶𝐶𝐶. Then the server sends requests to the load
balancer to identify the accessibility of the VM.

𝐶𝐶𝐶𝐶
𝑟𝑟𝑀𝑀𝑟𝑟
�� 𝐿𝐿𝐿𝐿, (11)

where 𝑣𝑣𝑒𝑒𝑟𝑟 denotes the request. After receiving the request, the load
balancer maintains a complete list of virtual machines using an index table
and responds with the availability status.

1831Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

LB → �1; 𝑉𝑉𝑚𝑚′𝑠𝑠𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑒𝑒
0; 𝑉𝑉𝑚𝑚′𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑒𝑒

, (12)

where the status of 𝑉𝑉𝑚𝑚′𝑠𝑠 is identified through ‘1’ and ‘0’.After that, the LB
starts to scan index tables and send the less-loaded and heavily loaded VM
IDs’ to the cloud server. The server performs tasks migration from a heavily
loaded to a less loaded virtual machine. In this way, resource-efficient load
balancing is obtained at the output layer. The algorithm of Ruzicka indexive
Throttle Load Balanced Deep neural learning is given below.

1832 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

Algorithm 1 described above outlines the process of load balancing
by the Ruzicka Indexive Throttle Load-Balanced Deep Neural Learning
approach. For each incoming task from the user, the load balancer in the
cloud server estimates the resource availability of the VM by Ruzicka Index
function. This function is utilized to calculate the load status of each VM in
the first hidden layer, classifying them as less loaded, overloaded, and
balanced loaded. Subsequently, LB transmits the IDs of the minimum
loaded and overloaded VMs to the cloud server. The server then makes a
decision regarding the immigration of tasks from the overloaded VM to the
less loaded one, focusing on the second hidden layer of deep learning
techniques. As a result, the cloud server efficiently balances the workload
between VMs with minimal time. This approach proves beneficial in
managing a huge number of incoming tasks, leading to minimization of
makespan and an increase in throughput.

4. Experimental setup. Experimental evaluation of RITLBDNL and
conventional methods, such as TS-DT [1], P2BED-C [2], and RL
Approach [3] are implemented using the Java language. To conduct the
experiment, we utilize the Personal Cloud Dataset obtained from
http://cloudspaces.eu/results/datasets. Major intend of the dataset is to
facilitate load balancing. It contains 17 attributes, and 66,245 instances. 17
attributes are row id, account id, file size (task size), operation_time_start,
and so on. Two columns, namely time zone and capped, are excluded from
the analysis. The aforementioned columns are selected for the purpose of
achieving effective load balancing between numerous VMs by big-data CC

5. Performance Analysis. To estimate the performance of
RITLBDNL, a comparative analysis was performed between TS-DT [1],
P2BED-C [2], and RL Approach [3] in load balancing efficiency,
throughput, makespan, response time and memory consumption in Table 1.

Load balancing efficiency: It refers to the ratio of a number of user
requests, which are accurately balanced across all VMs. It is computed as
given below:

𝐿𝐿𝐿𝐿𝐸𝐸 = �
𝑚𝑚𝑇𝑇𝑣𝑣𝑣𝑣𝑒𝑒𝑚𝑚𝑣𝑣𝑣𝑣𝑐𝑐𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑚𝑚𝑒𝑒𝑐𝑐𝑣𝑣𝑠𝑠𝑒𝑒𝑣𝑣𝑣𝑣𝑒𝑒𝑟𝑟𝑣𝑣𝑒𝑒𝑠𝑠𝑣𝑣𝑒𝑒𝑠𝑠

𝑖𝑖
� ∗ 100, (13)

where 𝐿𝐿𝐿𝐿𝐸𝐸 indicates a load balancing efficiency, ‘𝑖𝑖’ denotes the total
number of user requests.It is measured in percentage (%).

1833Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

http://cloudspaces.eu/results/datasets

Fig. 5. Analysis of load balancing efficiency

Figure 5 provides a graphical illustration of load balancing efficiency

across distinct numbers of user requests ranging from 5,000 to 50,000,
taken from the dataset. Figure 4 compares the results of four different
algorithms, namely RITLBDNL, TS-DT [1], P2BED-C [2], and RL
Approach [3]. It is evident that the RITLBDNL technique yields higher load
balancing efficiency. This observation is validated through statistical
assessment. In an experiment involving 5000 user requests, the RITLBDNL
technique achieved a load balancing efficiency of 99.24%. In contrast, the
efficiency of [1], [2], [3] was observed as 93.7%, 94.24%, and 95.2%,
respectively. Likewise, different results were attained for every method.
Comparing performance outcomes of the proposed method against
conventional techniques, overall comparison outcomes show that the
RITLBDNL technique increases load balancing efficiency by 8% ,7% and
5% than the [1], [2], [3]. The application of the deep learning technique in
RITLBDNL identifies the workload capacity of virtual machines based on
resource availability using the Ruzicka Similarity Index function. By
utilizing the throttle load-balancing algorithm efficiently, balances
workload between VMs, resulting in improved efficiency.

Throughput: it is defined as the ratio of the number of user requests
implemented per unit of time in Table 2. It is computed as follows:

𝑇𝑇𝐶𝐶 = �
𝑁𝑁𝑣𝑣𝑉𝑉𝑠𝑠𝑒𝑒𝑣𝑣𝑇𝑇𝑁𝑁𝑣𝑣𝑒𝑒𝑟𝑟𝑣𝑣𝑒𝑒𝑠𝑠𝑣𝑣𝑠𝑠𝑒𝑒𝑁𝑁𝑒𝑒𝑚𝑚𝑣𝑣𝑣𝑣𝑒𝑒𝑐𝑐

𝑣𝑣 (𝑠𝑠𝑒𝑒𝑚𝑚𝑇𝑇𝑖𝑖𝑐𝑐𝑠𝑠)
�, (14)

where ‘𝑇𝑇𝐶𝐶’ represents throughput, 𝑣𝑣 indicates time in seconds. It is
calculated as requests per second (requests/sec).

82
84
86
88
90
92
94
96
98

100

Lo
ad

 b
al

an
ci

ng
 e

ffi
ci

en
cy

 (%
)

Number of user-requests

 RITLBDNL

TS-DT

 P2BED-C

RL Approach

1834 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

Fig. 6. Analysis of throughput

Figure 6, presented above, illustrates a comparative analysis of

throughput. The analysis highlights that the proposed RITLBDNL
technique achieved enhanced performance. To ensure the robustness of the
RITLBDNL method, ten separate comparisons were conducted for each
method. The average of these ten comparisons reveals that the throughput
performance using the RITLBDNL technique improved by 54%, 46%, 39%
than the [1], [2], [3]. This improvement is achieved through the migration of
tasks from the overloaded VMs to the minimum loaded VMs.
Consequently, these selected resource-efficient, less loaded virtual
machines demonstrate the capability to consistently execute numerous user
requests within a specific time.

Makespan: The metric is determined by the duration a virtual
machine takes to handle a series of user requests in Table 3. It is calculated
as the mathematical dissimilarity among starting as well as completion
times of user-requested tasks.

𝑀𝑀𝑠𝑠 = (𝑣𝑣𝑐𝑐𝑡𝑡𝑚𝑚𝑐𝑐𝑡𝑡𝑀𝑀𝑡𝑡𝑀𝑀) − (𝑣𝑣𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠), (15)

where, 𝑀𝑀𝑠𝑠 represents the makespan, 𝑣𝑣𝑐𝑐𝑡𝑡𝑚𝑚𝑐𝑐𝑡𝑡𝑀𝑀𝑡𝑡𝑀𝑀 indicates request completion
time 𝑣𝑣𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠de notes a request for finishing time. It is measured in
milliseconds (ms).

0

500

1000

1500

2000

2500

3000
T

hr
ou

gh
pu

t (
re

qu
es

ts
/s

ec
)

Number of user-requests

 RITLBDNL

TS-DT

 P2BED-C

RL Approach

1835Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

Fig. 7. Analysis of Makespan

Figure 7 depicts a graphical representation of the makespan for

load balancing using four methods namely RITLBDNL, TS-DT [1],
P2BED-C [2], and RL Approach [3]. The figure illustrates that makespan
increases as the number of user requests increases. This occurs as a huge
number of user requests during the experiment consumes more time,
consequently increasing the makespan. However, in experiments with 5000
user requests, the time taken to complete user requests was only ′17𝑉𝑉𝑠𝑠'
using the RITLBDNL technique. The overall makespan was observed to
be 42𝑉𝑉𝑠𝑠, 38𝑉𝑉𝑠𝑠, and 35𝑉𝑉𝑠𝑠 for [1], [2], and [3], respectively. Following the
experiments, various results were examined for every method.
Comprehensive comparison denotes that makespan performance using
RITLBDNL is reduced by 45%, 41%, and 36% compared to the existing
methods. The RITLBDNL technique employs the Ruzicka similarity index
function to analyze the resource status of a VM based on energy,
bandwidth, memory, and CPU. Once a minimum loaded VM is identified,
LB migrates user requests from an overloaded to a less loaded VM. The less
loaded machine requires minimal time to complete the user requests.

Response time: It is defined as the duration it takes to respond user
requested tasks in Table 4.

𝑅𝑅𝑇𝑇 = 𝑖𝑖 ∗ 𝑇𝑇 (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑠𝑠𝑉𝑉𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑇𝑇𝑖𝑖 + 𝑤𝑤𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑤𝑤 + 𝑝𝑝𝑣𝑣𝑇𝑇𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑤𝑤), (16)

where 𝑅𝑅𝑇𝑇 indicates a response time, 𝑖𝑖 indicates the number of user
requests, 𝑇𝑇 represents time for broadcasting, waiting, and processing the
user requests. It is measured in milliseconds (ms).

0
20
40
60
80

100
120
140

M
ak

es
pa

n
(m

s)

Number of user-requests

 RITLBDNL

TS-DT

 P2BED-C

RL Approach

1836 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

Fig. 8. Analysis of response time

Figure 8 illustrates experimental outcomes of response time with the

number of user requests, ranging from 5000 to 50000. As the number of
requests enhances, the response time for every method in addition increases.
However, the proposed RITLBDNL technique achieves a lower response
time compared to existing methods. For instance, with 5000 user requests,
the response time for RITLBDNL was observed to be 41.5 𝑉𝑉𝑠𝑠, while
[1], [2], and [3] exhibited response times of 72 𝑉𝑉𝑠𝑠, 70 𝑉𝑉𝑠𝑠, and 66 𝑉𝑉𝑠𝑠,
respectively. The overall performance results of RITLBDNL are then
compared to existing methods, revealing that RITLBDNL minimizes
response time consumption by 31%, 28%, and 26% when compared to [1],
[2], and [3], respectively. This improvement is achieved using throttled load
balancing in the RITLBDNL technique, which effectively performs task
migration from overloaded to less loaded virtual machines. Consequently,
RITLBDNL minimizes both waiting and processing times for user requests.

5. Discussion. This study compares the proposed RITLBDNL and
existing TS-DT [1], P2BED-C [2], and RL Approach [3] based on various
parameters, such as load balancing efficiency, throughput, makespan, and
response time. The main drawbacks of existing methods such as failure to
obtain energy-aware load balancing with a tiny makespan and higher
throughput and the failure to employ a resource-aware scheduling approach
to assign tasks on VMs. Contrary to existing, Deep Neural Learning and
Throttled Load Balancing are utilized in RITLBDNL. By applying this
algorithm, the resource status of a virtual machine is examined to find a less

0

50

100

150

200

250

300
R

es
po

ns
e

tim
e

(m
s)

Number of user-requests

 RITLBDNL

TS-DT

 P2BED-C

RL Approach

1837Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

loaded virtual machine. By observing the above table, the results of load
balancing efficiency using the proposed RITLBDNL is highly increased
than the other existing methods. Also, the response time and makespan of
RITLBDNL are greatly reduced than the other works.

Table 1. Comparison table of proposed and existing methods

METHOD RITLBDNL
Technique TS-DT [1] P2BED-C [2] RL Approach [3]

Contribution

To improve load
balancing

performance
using deep neural

learning

To allocate tasks
using TS-DT

P2BED-C was
utilized for data

centers

To optimize cloud
resource

utilization using
RL Approach

Merits

Improved
throughput and

reduced the
makespan

Minimized the
makespan

Decreased
energy

consumption

Diminished
response time

Demerits

False-positive
rate and memory

consumption
were considered

Energy-aware load
balancing was not

obtained

Efficiency of
the method was
not enhanced

Makespan was
not efficiently

reduced

Load balancing
efficiency (%) 98.55 91.5 92.38 93.57

Throughput
(requests/sec) 1619.6 1057.9 1113.5 1176.2

Makespan (ms) 46 81 76 70

Response time
(ms) 117 165.85 160.7 155.80

Table 1 illustrates a comparison of the proposed RITLBDNL

technique and existing TS-DT [1], P2BED-C [2], and RL Approach [3] by
using different metrics. Among the three methods, the proposed PCR-
AMESCSRO technique provides better performance. The load balancing
efficiency was improved by 98.55% using RITLBDNL upon comparison
with the three other existing methods. Also, the response time and
makespan of the proposed RITLBDNL are obtained as 46 ms and 117 ms
which is smaller than the other methods.

6. Conclusion. Balancing the workload is the most important
problem in the cloud owing to its dynamic nature. This study introduces a
RITLBDNL technique which has been developed to tackle the issue of
minimizing makespan and enhancing optimal resource effective load
balancing in the cloud. By utilizing the Ruzicka Similarity Index, the

1838 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

cloud's LB determines the virtual machine resource status for detecting
overloaded, less loaded as well as balanced loads. LB performs to dispense
workload from heavily loaded virtual machines to minimum loaded ones
with higher efficiency. The experimental results also prove that the
proposed model has reduced makespan, as well as response time, improved
throughput, and efficiency. Compared with various state-of-the-art models,
the proposed technique is more efficient. The outcomes of this study have
important implications for business applications (i.e., Amazon cloud) to
find and classify the resource-efficient VM to allocate the tasks. The less
loaded machine needs minimum time and makespan to complete the user
requests. Overall, this study provides a valuable contribution to the field of
load balancing using DL, and its proposed technique can be extended to
other domains where novel DL and optimization are used.

References

1. Mahmoud H., Thabet M., Khafagy M., Omara F. Multiobjective task scheduling in
cloud environment using decision tree algorithm. IEEE Access. 2022. vol. 10.
pp. 36140–36151.

2. Kumar K. P2BED-C: a novel peer to peer load balancing and energy efficient
technique for data-centers over cloud. Wireless Personal Communications. 2022.
vol. 123(1). pp. 311–324.

3. Lahande P., Kaveri P., Saini J., Kotecha K., Alfarhood S. Reinforcement Learning
approach for optimizing Cloud Resource Utilization with Load Balancing. IEEE
Access. 2023. vol. 11. pp. 127567–127577.

4. Nabi S., Ibrahim M., Jimenez J. DRALBA: Dynamic and resource aware load
balanced scheduling approach for cloud computing. IEEE Access. 2021. vol. 9.
pp. 61283–61297.

5. Sohani M., Jain S. A predictive priority-based dynamic resource provisioning scheme
with load balancing in heterogeneous cloud computing. IEEE access. 2021. vol. 9.
pp. 62653–62664.

6. Kaviarasan R., Balamurugan G., Kalaiyarasan R. Effective load balancing approach in
cloud computing using Inspired Lion Optimization Algorithm. e-Prime-Advances in
Electrical Engineering, Electronics and Energy. 2023. vol. 6.
DOI: 10.1016/j.prime.2023.100326.

7. Adil M., Nabi S., Aleem M., Diaz V., Lin J. CA‐MLBS: content‐aware machine
learning based load balancing scheduler in the cloud environment. Expert Systems.
2023. vol. 40(4). DOI: 10.1111/exsy.13150.

8. Muthusamy A., Dhanaraj R. Dynamic Q-Learning-Based Optimized Load Balancing
Technique in Cloud. Mobile Information Systems. 2023. vol. 2023(1).
DOI: 10.1155/2023/7250267.

9. Kruekaew B., Kimpan W. Multi-objective task scheduling optimization for load
balancing in cloud computing environment using hybrid artificial bee colony
algorithm with reinforcement learning. IEEE Access. 2022. vol. 10. pp. 17803–17818.

10. Mapetu J., Kong L., Chen Z. A dynamic VM consolidation approach based on load
balancing using Pearson correlation in cloud computing. The Journal of
Supercomputing. 2021. vol. 77(6). pp. 5840–5881.

1839Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

11. Saroit I., Tarek D. LBCC-Hung: A load balancing protocol for cloud computing based
on Hungarian method. Egyptian Informatics Journal. 2023. vol. 24(3).
DOI: 10.1016/j.eij.2023.100387.

12. Ashawa M., Douglas O., Osamor J., Jackie R. Retracted Article: Improving cloud
efficiency through optimized resource allocation technique for load balancing using
LSTM machine learning algorithm. Journal of Cloud Computing. 2022. vol. 11(1).
DOI: 10.1186/s13677-022-00362-x.

13. Annie Poornima Princess G., Radhamani A. A hybrid meta-heuristic for optimal load
balancing in cloud computing. Journal of grid computing. 2021. vol. 19(2).
DOI: 10.1007/s10723-021-09560-4.

14. Mekonnen D., Megersa A., Sharma R., Sharma D. Designing a Component-Based
Throttled Load Balancing Algorithm for Cloud Data Centers. Mathematical Problems
in Engineering. 2022. vol. 2022(1). DOI: 10.1155/2022/4640443.

15. Haidri R., Alam M., Shahid M., Prakash S., Sajid M. A deadline aware load balancing
strategy for cloud computing. Concurrency and Computation: Practice and
Experience. 2022. vol. 34(1). DOI: 10.1002/cpe.6496.

16. Pradhan A., Bisoy S., Sain M. Action-Based Load Balancing Technique in Cloud
Network Using Actor-Critic-Swarm Optimization. Wireless Communications and
Mobile Computing. 2022. vol. 2022(1). DOI: 10.1155/2022/6456242.

17. Udayasankaran P., Thangaraj S. Energy efficient resource utilization and load
balancing in virtual machines using prediction algorithms. International Journal of
Cognitive Computing in Engineering. 2023. vol. 4. pp. 127–134.

18. Velpula P., Pamula R. EBGO: an optimal load balancing algorithm, a solution for
existing tribulation to balance the load efficiently on cloud servers. Multimedia Tools
and Applications. 2022. vol. 81(24). pp. 34653–34675.

19. Johora F., Ahmed I., Shajal M., Chowdhory R. A load balancing strategy for reducing
data loss risk on cloud using remodified throttled algorithm. International Journal of
Electrical and Computer Engineering. 2022. vol. 12(3). pp. 3217–3225.
DOI: 10.11591/ijece.v12i3.

20. Khalil M., Shah S., Taj A., Shiraz M., Alamri B., Murawwat S., Hafeez G.
Renewable-aware geographical load balancing using option pricing for energy cost
minimization in data centers. Processes. 2022. vol. 10(10). DOI: 10.3390/pr10101983.

21. Rajashekar K., Channakrishnaraju Gowda P., Jayachandra A. SCEHO-IPSO: A
Nature-Inspired Meta Heuristic Optimization for Task-Scheduling Policy in Cloud
Computing. Applied Sciences. 2023. vol. 13(19). DOI: 10.3390/app131910850.

22. Rani P., Singh P., Verma S., Ali N., Shukla P., Alhassan M. An implementation of
modified blowfish technique with honey bee behavior optimization for load balancing
in cloud system environment. Wireless Communications and Mobile Computing.
2022. vol. 2022. DOI: 10.1155/2022/3365392.

23. Hung L., Wu C., Tsai C., Huang H. Migration-based load balance of virtual machine
servers in cloud computing by load prediction using genetic-based methods. IEEE
Access. 2021. vol. 9. pp. 49760–49773.

24. Devi K., Sumathi D., Vignesh V., Anilkumar C., Kataraki K., Balakrishnan S.
CLOUD load balancing for storing the internet of things using deep load balancer
with enhanced security. Measurement: Sensors. 2023. vol. 28.
DOI: 10.1016/j.measen.2023.100818.

25. Adaikalaraj J., Chandrasekar C. To improve the performance on disk load balancing
in a cloud environment using improved Lion optimization with min-max algorithm.
Measurement: Sensors. 2023. vol. 27. DOI: 10.1016/j.measen.2023.100834.

Ellakkiya M. — Research scholar, Department of computer science, Cauvery College For
Women (Autonomous); Research scholar, Thanthai Periyar Government Arts and Science

1840 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

College (Autonomous), Affiliated to Bharathidasan University. Research interests: cloud
computing, machine learning. The number of publications — 15.
ellakkiya.researchscholar@gmail.com; 620023, Tiruchirappalli, India; office phone:
+9994683100.

Ravi T.N. — Associate professor of pg & research, Department of computer science, Jamal
Mohamed College (Autonomous), Tiruchirappalli, Affiliated to Bharathidasan University.
Research interests: parallel processing, network computing, genetic algorithms, artificial
intelligence, data mining. The number of publications — 73. proftnravi@gmail.com; 36/2,
Race Course Road, Khajamalai, 620023, Tiruchirappalli, India; office phone: +91(0431)233-
1135.

Panneer Arokiaraj S. — Associate professor, Department of computer science, Thanthai
Periyar Government Arts and Science College (Autonomous), Affiliated to Bharathidasan
University. Research interests: data compression, biometric authentication, data mining. The
number of publications — 15. drpancs@gmail.com; 36/2, Race Course Road, Khajamalai,
620023, Tiruchirappalli, India; office phone: +91(0431)242-0079.

1841Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

УДК 004 DOI 10.15622/ia.23.6.9

М. ЭЛЛАККИЯ, Т. РАВИ, С. ПАННИР АРОКИАРАДЖ
ИНДЕКСНОЕ РЕГУЛИРУЕМОЕ ГЛУБОКОЕ НЕЙРОННОЕ

ОБУЧЕНИЕ РУЖИЧКИ ДЛЯ РЕСУРСОЭФФЕКТИВНОЙ
БАЛАНСИРОВКИ НАГРУЗКИ В ОБЛАЧНОЙ СРЕДЕ

Эллаккия М., Рави Т., Паннир Арокиарадж С. Индексное регулируемое глубокое
нейронное обучение Ружички для ресурсоэффективной балансировки нагрузки в
облачной среде.

Аннотация. Облачные вычисления (CC) являются известной технологией, которая
позволяет пользователям и организациям получать доступ к сервисам в соответствии с
их требованиями. Этот метод вычислений предлагает хранилище, платформы
развертывания и подходящий доступ к веб-сервисам через интернет. Балансировка
нагрузки является важным фактором оптимизации вычислительных ресурсов и
хранения. Она направлена на разумное распределение рабочей нагрузки между каждой
виртуальной машиной. Было разработано несколько традиционных методов
балансировки нагрузки, которые доступны в литературе. Однако достижение
эффективной балансировки нагрузки с минимальным временем завершения и
улучшенной пропускной способностью остается сложной задачей. Для повышения
эффективности балансировки нагрузки был разработан новый метод, известный как
индексированный регулируемый метод Ружички балансировки нагрузки глубокого
нейронного обучения (RITLBDNL). Основная цель RITLBDNL состоит в том, чтобы
повысить пропускную способность и минимизировать время выполнения работы в
облаке. В методе RITLBDNL модель глубокого нейронного анализа включает входной
слой, два скрытых слоя и выходной слой для улучшения производительности
балансировки нагрузки. На входном слое собираются задачи пользователей облака и
отправляются на скрытый слой 1. На этом слое балансировщик нагрузки в облачном
сервере анализирует состояние ресурсов виртуальной машины в зависимости от
энергии, пропускной способности, объема памяти и ЦПУ с использованием индекса
сходства Ружички. Затем виртуальные машины классифицируются как перегруженные,
слабо загруженные или сбалансированные. Результаты анализа передаются на скрытый
слой 2, где выполняется регулируемая балансировка нагрузки для распределения
нагрузки с сильно загруженных виртуальных машин на минимально загруженные.
Облачный сервер эффективно распределяет рабочую нагрузку между виртуальными
машинами с более высокой пропускной способностью и меньшим временем отклика для
обработки огромного количества входящих задач. Для оценки результатов
экспериментов предложенный метод сравнивается с другими существующими методами
балансировки нагрузки. Результат показывает, что предложенный метод RITLBDNL
обеспечивает эффективность балансировки нагрузки с увеличением на 7%, пропускной
способностью на 46%, уменьшением времени завершения на 41% и времени отклика на
28% по сравнению с традиционными методами.

Ключевые слова: облачные вычисления, балансировка нагрузки, глубокое
обучение, индекс сходства Ружички, регулируемая балансировка нагрузки.

Литература

1. Mahmoud H., Thabet M., Khafagy M., Omara F. Multiobjective task scheduling in
cloud environment using decision tree algorithm. IEEE Access. 2022. vol. 10.
pp. 36140–36151.

1842 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

2. Kumar K. P2BED-C: a novel peer to peer load balancing and energy efficient
technique for data-centers over cloud. Wireless Personal Communications. 2022.
vol. 123(1). pp. 311–324.

3. Lahande P., Kaveri P., Saini J., Kotecha K., Alfarhood S. Reinforcement Learning
approach for optimizing Cloud Resource Utilization with Load Balancing. IEEE
Access. 2023. vol. 11. pp. 127567–127577.

4. Nabi S., Ibrahim M., Jimenez J. DRALBA: Dynamic and resource aware load
balanced scheduling approach for cloud computing. IEEE Access. 2021. vol. 9.
pp. 61283–61297.

5. Sohani M., Jain S. A predictive priority-based dynamic resource provisioning scheme
with load balancing in heterogeneous cloud computing. IEEE access. 2021. vol. 9.
pp. 62653–62664.

6. Kaviarasan R., Balamurugan G., Kalaiyarasan R. Effective load balancing approach in
cloud computing using Inspired Lion Optimization Algorithm. e-Prime-Advances in
Electrical Engineering, Electronics and Energy. 2023. vol. 6.
DOI: 10.1016/j.prime.2023.100326.

7. Adil M., Nabi S., Aleem M., Diaz V., Lin J. CA‐MLBS: content‐aware machine
learning based load balancing scheduler in the cloud environment. Expert Systems.
2023. vol. 40(4). DOI: 10.1111/exsy.13150.

8. Muthusamy A., Dhanaraj R. Dynamic Q-Learning-Based Optimized Load Balancing
Technique in Cloud. Mobile Information Systems. 2023. vol. 2023(1).
DOI: 10.1155/2023/7250267.

9. Kruekaew B., Kimpan W. Multi-objective task scheduling optimization for load
balancing in cloud computing environment using hybrid artificial bee colony
algorithm with reinforcement learning. IEEE Access. 2022. vol. 10. pp. 17803–17818.

10. Mapetu J., Kong L., Chen Z. A dynamic VM consolidation approach based on load
balancing using Pearson correlation in cloud computing. The Journal of
Supercomputing. 2021. vol. 77(6). pp. 5840–5881.

11. Saroit I., Tarek D. LBCC-Hung: A load balancing protocol for cloud computing based
on Hungarian method. Egyptian Informatics Journal. 2023. vol. 24(3).
DOI: 10.1016/j.eij.2023.100387.

12. Ashawa M., Douglas O., Osamor J., Jackie R. Retracted Article: Improving cloud
efficiency through optimized resource allocation technique for load balancing using
LSTM machine learning algorithm. Journal of Cloud Computing. 2022. vol. 11(1).
DOI: 10.1186/s13677-022-00362-x.

13. Annie Poornima Princess G., Radhamani A. A hybrid meta-heuristic for optimal load
balancing in cloud computing. Journal of grid computing. 2021. vol. 19(2).
DOI: 10.1007/s10723-021-09560-4.

14. Mekonnen D., Megersa A., Sharma R., Sharma D. Designing a Component-Based
Throttled Load Balancing Algorithm for Cloud Data Centers. Mathematical Problems
in Engineering. 2022. vol. 2022(1). DOI: 10.1155/2022/4640443.

15. Haidri R., Alam M., Shahid M., Prakash S., Sajid M. A deadline aware load balancing
strategy for cloud computing. Concurrency and Computation: Practice and
Experience. 2022. vol. 34(1). DOI: 10.1002/cpe.6496.

16. Pradhan A., Bisoy S., Sain M. Action-Based Load Balancing Technique in Cloud
Network Using Actor-Critic-Swarm Optimization. Wireless Communications and
Mobile Computing. 2022. vol. 2022(1). DOI: 10.1155/2022/6456242.

17. Udayasankaran P., Thangaraj S. Energy efficient resource utilization and load
balancing in virtual machines using prediction algorithms. International Journal of
Cognitive Computing in Engineering. 2023. vol. 4. pp. 127–134.

1843Informatics and Automation. 2024. Vol. 23 No. 6. ISSN 2713-3192 (print)
ISSN 2713-3206 (online) www.ia.spcras.ru

__ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

18. Velpula P., Pamula R. EBGO: an optimal load balancing algorithm, a solution for
existing tribulation to balance the load efficiently on cloud servers. Multimedia Tools
and Applications. 2022. vol. 81(24). pp. 34653–34675.

19. Johora F., Ahmed I., Shajal M., Chowdhory R. A load balancing strategy for reducing
data loss risk on cloud using remodified throttled algorithm. International Journal of
Electrical and Computer Engineering. 2022. vol. 12(3). pp. 3217–3225.
DOI: 10.11591/ijece.v12i3.

20. Khalil M., Shah S., Taj A., Shiraz M., Alamri B., Murawwat S., Hafeez G.
Renewable-aware geographical load balancing using option pricing for energy cost
minimization in data centers. Processes. 2022. vol. 10(10). DOI: 10.3390/pr10101983.

21. Rajashekar K., Channakrishnaraju Gowda P., Jayachandra A. SCEHO-IPSO:
A Nature-Inspired Meta Heuristic Optimization for Task-Scheduling Policy in Cloud
Computing. Applied Sciences. 2023. vol. 13(19). DOI: 10.3390/app131910850.

22. Rani P., Singh P., Verma S., Ali N., Shukla P., Alhassan M. An implementation of
modified blowfish technique with honey bee behavior optimization for load balancing
in cloud system environment. Wireless Communications and Mobile Computing.
2022. vol. 2022. DOI: 10.1155/2022/3365392.

23. Hung L., Wu C., Tsai C., Huang H. Migration-based load balance of virtual machine
servers in cloud computing by load prediction using genetic-based methods. IEEE
Access. 2021. vol. 9. pp. 49760–49773.

24. Devi K., Sumathi D., Vignesh V., Anilkumar C., Kataraki K., Balakrishnan S.
CLOUD load balancing for storing the internet of things using deep load balancer
with enhanced security. Measurement: Sensors. 2023. vol. 28.
DOI: 10.1016/j.measen.2023.100818.

25. Adaikalaraj J., Chandrasekar C. To improve the performance on disk load balancing
in a cloud environment using improved Lion optimization with min-max algorithm.
Measurement: Sensors. 2023. vol. 27. DOI: 10.1016/j.measen.2023.100834.

Эллаккия М. — научный сотрудник, факультет компьютерных наук, Колледж Кавери
для женщин (автономный); научный сотрудник, Государственный колледж искусств и
наук имени Тхантхай Перияра (автономный), филиал Университета Бхаратхидасан.
Область научных интересов: облачные вычисления, машинное обучение. Число научных
публикаций — 15. ellakkiya.researchscholar@gmail.com; 620023, Тируччираппалли,
Индия; р.т.: +9994683100.

Рави Т.Н. — доцент кафедры, факультет компьютерных наук, Колледж Джамаля
Мохаммеда (автономный), Тируччираппалли, филиал Университета Бхаратхидасан.
Область научных интересов: параллельная обработка, сетевые вычисления, генетические
алгоритмы, искусственный интеллект и интеллектуальный анализ данных. Число
научных публикаций — 73. proftnravi@gmail.com; Ипподром, Хаджамалай, 36/2, 620023,
Тируччираппалли, Индия; р.т.: +91(0431)233-1135.

Паннир Арокиарадж С. — доцент кафедры, кафедра компьютерных наук,
Государственный колледж искусств и науки Тантай Перияр (автономный), Университет
Бхаратидасан. Область научных интересов: сжатие данных, биометрическая
аутентификация, интеллектуальный анализ данных. Число научных публикаций — 15.
drpancs@gmail.com; Ипподром, Хаджамалай, 36/2, 620023, Тиручираппалли, Индия;
р.т.: +91(0431)242-0079.

1844 Информатика и автоматизация. 2024. Том 23 № 6. ISSN 2713-3192 (печ.)
ISSN 2713-3206 (онлайн) www.ia.spcras.ru

__ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ИНЖЕНЕРИЯ ДАННЫХ И ЗНАНИЙ

