ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

DOI 10.15622/ia.2021.20.1.5

M. FADHEL, Z. OMAR
GEOMETRIC PIECEWISE CUBIC BEZIER INTERPOLATING
POLYNOMIAL WITH C? CONTINUITY

Fadhel M.A., OmarZB. Geometric Piecewise Cubic Bézier Interpolating
Polynomial with C? Continuity.

Abstract. Bézier curve is a parametric polynomial that is applied to produce good
piecewise interpolation methods with more advantage over the other piecewise polynomials. It
is, therefore, crucial to construct Bézier curves that are smooth and able to increase the
accuracy of the solutions. Most of the known strategies for determining internal control points
for piecewise Bezier curves achieve only partial smoothness, satisfying the first order of
continuity. Some solutions allow you to construct interpolation polynomials with smoothness
in width along the approximating curve. However, they are still unable to handle the locations
of the inner control points. The partial smoothness and non-controlling locations of inner
control points may affect the accuracy of the approximate curve of the dataset. In order to
improve the smoothness and accuracy of the previous strategies, a new piecewise cubic Bézier
polynomial with second-order of continuity C” is proposed in this study to estimate missing
values. The proposed method employs geometric construction to find the inner control points
for each adjacent subinterval of the given dataset. Not only the proposed method preserves
stability and smoothness, the error analysis of numerical results also indicates that the resultant
interpolating polynomial is more accurate than the ones produced by the existing methods.
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1. Introduction. The Missing values of dataset are the common issues
in many areas of sciences such as statistics, computer sciences, and geophys-
ics [1-3]. Several interpolation methods employed piecewise polynomials to
estimate missing values. One of them is Bezier curve which is a parametric
polynomial used extensively in computer-aided design (CAD) [4, 5], numeri-
cal analysis [6, 7], hitch avoidance path determination of unicycle ro-
bots [8, 9], lane changing [10, 11], and roundabouts [12, 13] due to its flexi-
bility, stability, and simplicity in representation. By taking the advantages of
Bézier curve, researchers started to construct a piecewise cubic Bézier curve
at every subinterval of data points in order to improve the smoothness of the
interpolating polynomial and consequently increase the accuracy.

Ge and Kang [14] proposed two algorithms of piecewise Bezier func-
tions. The first algorithm produces an approximation function for a dataset,
while, the resultant function in the second algorithm interpolates through a da-
taset. However, both algorithms only satisfy the second order geometric conti-
nuity (G°). In Pollock [15], piecewise cubic Bézier curves with the second order
of continuity (C?) have been achieved by adopting the construction of a natural
cubic spline strategy. Three years later, a geometric technique piecewise Bezier
interpolating was proposed by Shemanarev [16]. The resultant polynomial
seemed smooth at data points, behaving like the first order geometric continui-
ty (G') although he did not test the order of continuity. Yau and Wang [17] pre-
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sented a new method for deriving piecewise cubic Bézier interpolating polyno-
mial with the first order of continuity (C’). Nonetheless, the calculations re-
quired in this strategy are very time-consuming. Subsequently, Saaban, Zai-
nudin, and Bakar [18] combined Bézier and Said-Ball functions to estimate the
missing values of solar radiation in Kedah. In order to further improve the esti-
mation of the missing values of solar radiation datasets in Penang, Karim [19]
preserved the positivity and monotonicity by deriving sufficient conditions for
rational cubic Ball interpolant. However, the cubic Ball interpolation satisfies
the first order of continuity C’. To control the piecewise Bezier curves, Saaban,
Zainudin, and Abu Bakar [20] constructed piecewise parametric polynomials
with C! continuity by imposing sufficient positivity conditions for Bézier curve.
The same year, Ueda et al. [21] proposed an algorithm using multi objective
simulated annealing to determine a piecewise cubic Bézier Polynomial with C’
continuity. However, their resultant polynomial is not interpolated through all
data points, which means that the polynomial is only an approximate curve. By
taking the advantage of the diagonal matrix, Stelia, Potapenko, and Sirenko [22]
determined the coefficients of linear system equations to find the inner control
points. Unfortunately, the resulted piecewise cubic Bezier polynomial on-
ly fulfils the first order of continuity C’. Moreover, an improvement of im-
age upscaling resolution has been attempted by Zulkifli et al. [23] utilizing a
rational cubic Ball function.

In this article, a geometric structure of piecewise parametric interpo-
lating polynomial employing cubic Bézier curves is proposed for locating
the inner control points.

2. Piecewise Cubic Bézier Curve. A piecewise cubic Bézier curve
is constructed by a sequence of cubic Bézier curves interpolated at the data

points W, =(x;,»;), i=0, ..., n,, to produce a smooth and continuous

curve (refer to Fig. 1). According to Elber [24] and Quarteroni, Sacco, and
Saleri [25], Bézier function P(?) is given by:

PW)=Y pBI(0),
i=0

where p, = (pxl_,pv_) are a control points, and B/ (¢) :[ ]t’ (1-1)"" are a
4] l

Bernstein polynomials, where:

n |
=" for all i.
i) N(n-i)

134 Wndopmatyka n aBTomatunsaums. 2021. Tom 20 Ne 1. ISSN 2713-3192 (ney.)
ISSN 2713-3206 (oHnainH) www.ia.spcras.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

By using a cubic Bézier curve between every two adjacent data
points [26], the following piecewise parametric polynomial F(%) of cubic
Bézier curves Px(t) is constructed:

Ry(1) te[0,1],
F) Pl(:t) te[O,:l],

P,H‘(t) te [01]
forall £ =0,...,n—1, where
B(t)=(1-0)" py +3(1=01pf +3(1-0t* py +1p5 @)
and
IAGEIEAONAG)S
with

X () =(1-0) pl, +30-01pf +3(1-0 pl, +£ pL,
and y, (1) = (1-1) py, +3(=0)tp}, +3(1-0) py, +2 Y.

o (xpn, yn)

.(xn—lyyn—l)
(xllyl)
P S
e °

(x5, 55) o (x3,53)

]
(x0,¥0)

Fig. 1. Cubic bézier curve between every two adjacent data points
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Each subinterval requires two inner control points and two end
points for constructing a cubic Bézier spline. Since there are n subintervals,
2n inner control points are needed to construct n cubic Bézier splines. The
control points for each cubic Bézier curve is given by:

pe =P,

where ¢=0...,3.

Several previous studies have found good strategies for locating the
inner control points for piecewise Bézier curves. Most of them, however,
achieve partial smoothness by satisfying the first order of continuity C’ as in
Saaban et al. [18, 20], Stelia et al. [22], and Zulkifli et al. [23]. Although,
some researchers achieved to construct interpolating polynomials with wid-
er smoothness along the approximating curve, including Pollock [15], they
are still unable to handle the locations of the inner control points. The par-
tial smoothness and/or non-controlling locations of inner control points may
affect the accuracy of the approximate curve of the dataset.

3. Proposed Piecewise Cubic Bézier Polynomial. In order to improve
the smoothness and accuracy of the previous strategies, a new piecewise inter-
polating polynomial known as C° Geometric Bézier Polynomial (C2GBP) is
proposed in this study. To construct this polynomial, the inner control points
will be located geometrically depending on the polygon of the dataset.

3.1. Construction of C2GBP. In the section, the construction of the
new piecewise interpolating polynomial is discussed. The procedure details
for constructing C2GBP are as follows:

Step 1. Find the straight lines in all subintervals.

Let W, W,,, be straight lines in subintervals, where k =0,...,n—1, as
shown in Figure 2.

Po

pe #1 }
2 1 i
0 - «;gl 0, M/u.
Ho Wi é n—1
pi]B é’% Ilz [
WQ»"' e o'pn—l
. N7/ . /1 P1
p Wy W, Wz 4,£nflectwn Wi
F O n—2
O Ws AP
b2 e o
p{rZ T Pn-2
Fig. 2. Construction of C2GBP
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The slope @, is defined as:

Vi1 — Vi
W, =—"F——=,

X1 — X

whose y-intercept is:
O = Vi — O
O = Vi — Oy

Step 2. Find the straight lines connecting W, with W, where
j=0,.,n-1.

Let W W ., be straight lines as shown in Figure 2 with slopes a;
defined by:
_ Yis1 = Yj-
Tox j+ T X

whose y-intercepts are:

by=yj1=a;x;,.

The equations for straight lines of W Wi arey=a;x+b;.

Step 3. Find y-intercepts of the straight lines pass through W] with
slope a; .

Let €, be a straight line passing through W, with slope a; (refer to
Fig. 3.1). The y-intercepts of the line is defined as:

01 =N —a%. @)

Step 4. Find interception point (p =(p,,p,)) of the straight line

W, W, with perpendicular of the same straight line passing through W, .
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Let v be a straight line perpendicular to W W, passing through 1.

Therefore, the slope of v is __L | while y-intercept is given by:
a4

¢ 1
by =y +—x,
a,

therefore, the interception point is defined as:

Py = bh
a +—
4
and y-intercept is:
py =apy +b1'

Step 5. Find y-intercept (4,) of the straight line with slope @, .
Let y, be a value calculated by the distance 3I(W,p,) between W,

and p,, where:

S0 =0 = Py + (35— )

The value of ¥, is defined as:

m3Wh)
Ty

where m is the number of inner control points, and ¢ is the degree of
the polynomial in each sub-interval. In our construction, the values of ¢
and m are 3 and 2, respectively.

Then, y-intercepts is defined by:

hy =0y £ %5

where the positive/negative value of ), is determined using algorithm
below:
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Input: W, @,, 6,, b, o, , IWW), IW,p,) -
Output: y-intercepts (/) of a straight line parallel to W1

with a distance of .
Start

70 =(2307)) /3
if b, <o, then
hy =, +70
else if b, >0, then
hy =670

end
End

Step 6. Find the inner control point pg in the first subinterval.

The inner control point of the first subinterval pJ is defined as in-
terception of the line g, with the line Q,, where @, is the straight line
givenas y =ayx —h, .

Hence,

and y-intercept is:
0 0
pyz = a)Opxz + hO‘

Step 7. Find the straight lines connecting W, with p .

Let W,p) be straight lines, as shown in Figure 2.

The slope 7, is:

0
_ pyz - yO
770 -0
pxz - xO
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with y-intercept:

0 0
80 = py2 _770Px2 .

The straight line of W, pJ is ¥y =7,x+ 9.
Step 8. Find the inner control point plI at second subinterval.

Let J, is a distance between pj and W, defined by :

3= \/(y1 %) H(x-p )

whose slope is:

yl - py2
@, 5
X pr
and y-intercept:
& =y -ox.

Let J,is a distance between the inner control point p; and W,
given by:

3= (ol -w ) (P -

Since pll satisfies the equation of line €,, then p'y1 =a, p]n +&.

Hence,

(@) +1](p,) +

(3)
[Zalo'l -2ya _le]P)Iq "'[(YJZ —2y0 +O'12 +(X1)2 —(31)2:| =0

using quadratic formula to find the value of p]lq in Equation (3). Substitut-

ing p}, into (2) yields the value of p} .
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Step 9. Find y-intercept (/) of the straight line g, with slope @, as
described in the following algorithms:

Input: @, p., ,.b,, 0.
Output: y-intercepts (/) of the straight line with slope @ .
Start

hy = p), —op),
N :|h1 _51|
if b >0, &b, >0,0r b <0, &b, <0, then
h <h,
else if b, > 0y &b, <0, then (inflection)
hy =6, + 7,
else if b, <o, &b, > 0, then (inflection)
‘ hy =06, -7,
End

end
End

Step 10. Find y-intercepts (9;) of the straight line connecting
W, with pj.

Let W,p, be straight lines as shown in Figure 2.
The slope 7, is defined as:

o= P
= il
xZ - p:q
and y-intercept is:
S, = py, —m Py, -

The straight line of W, p, is represented by y=mx+9,.
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When there is an inflection of the data points polygon, the slope will
be calculated by replacing W, with ', as given below:

Let r be a perpendicular of the straight y = @, x+ A, , hence, the slope

L 1 . . .
of r is given by ——, while y-intercept is
@

1
ho_ 1 .
bl _py1+a)1 pxl'

This leads to the interception point xl = (xi X yl) where:

h
S
o +—
@
with y-intercept:
1
Ty =——X\ +bi
@

Following algorithm demonstrates the y-intercept (8,) construction

that covers the inflection areas in a polygon dataset. Refer to Figure 3.1 for
line ¢.

Input: W,,,,p;,h.b,,0,,b,,0, .
Output: y-intercepts (3) of the straight line with slope @ .

Start

1
h _ 1 |
b] _py1+w1 pxl

T =—b1h_}il
o+
o

1
XL :__Xic-i_b{l'
@,
if bl > 0-1 &bz > 02 Ol‘bl < 01 &bz <02 then
142
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1
yz_pyl
xz_p)]cl

else if b, > 0, &b, <0, then (inflection)

m=

1
_Xy—p]n

=
Te— Dy

end
End

9 =p, —mpy -

Step 11. Find the inner control point plo and p)

Let pl0 , pé are intercept points of straight lines §,,4, with
straight the line W W, respectively,

hy—¢
0o _ "0 . 0 _ 0
pxl - al _a)o > pyl - a)Opxl +h0' (4)
h—¢
0o _ " . 0 _ 0
pxz - al _w1 > pyz - a)lpxz +hl' (5)

In order to define the value of &, we will use the following relation:

43, = \/(ply2 -y )2 +(p, - P, )2 : (©)

Substituting (4), (5) in (6) gives:

2
h —
16(31)22[511( ! SJH’IJ -
4~

2
G- )\ G~ )
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which leads to:

(@) 41 2(1+om) +(a)0)2+1}2_
(a-o) (a-a)a-@) (q-q)

[ 2h(@a +1) | ( 204ma + 20 hga; +2(h + hy) . 2hy (@, +1) o
H (al_w1)2 ] [ (al—a)l)(al—a)o) J [ (‘11—500)2 ]] (7

( +1) 2h1h0(a12+1) +h°( +1)—16 =0.

h
(“1 ) (a, —o)(a - o) (a _wo)

By solving Equation (7) using quadratic formula, we can find the value
of & which then substituted into (4), (5) to get the value of Pl0 and P2l .

Step 12. Repeat Step 8 to find inner control point PlS where
s=2,.,n—1. Replacing 3, with 3, y, with y,, x, with x,, P, with
P7', P' with P°, a, with 7,, Q, with Q_, and o, with 4, the inner

control point P’ can be found, where 7, define as 7, =

Hy =Y —ToXs

Step 13. Repeat Step 9 to find y-intercepts (A,) of the straight line
with slope @ .

Replacing ¢, with @, & with h,, B' with P*, @ with @, ,
with o,, b, with b,, oy with o, %, with A, and », with 7, to find 4, .

Step 14. Repeat Step 10 to find y-intercepts (9;) of the straight line
connecting W,,, with P’.

Replacing 7; with 77, , W, with W,,,, P' with B*, @ with @,
by with hg, b with b", and »' with »* to find 9, .

Step 15. Find the inner control point Py

The distance between P, and B® given as:

23, = \/(p;1 -y )2 + (pi1 -py )2
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Suppose the distance between the inner control points Pls_1 and P;

is 43, . Then:

a3, =(p ) +(ph -2y

Since P, satisfies the equation of the line ¢, , then

Py, =1,py, +9,, which yields:

(02 1)(0s, ) +[ 20,9, ~203'n 23 |5, +

1 2 1 2 1 2 2 (8)
+|:(p;l ) =209, +9.7 +(py) —163, }:o

The quadratic formula will be employed in Equation (8) to find the
value of py, . As well, substituting py, into (2) to produce pj, .

The values of inner control points are then substituted in (1) in order
to obtain PCBP as below:

(%6(0), 30 (1)) xo (1) e[xo,xllyo(t) G[J’o>y1:|at [o,1],

= (xl(t:),yl(t)) xl(t)e[xl,xz],y1:<t)e[yl,yz],te[o,l],

(‘xn—l ([), Y1 (t)) Xn-1 (t) € [xn—l > Xy :|9 Y- (t) € I:yn—l > Vn :I’t € [O’ 1]

3.2. Limitations. The limitations of the proposed method are as follows:

1. The data points should be arranged ascending as
Wy <W, <..<W,.

2. The number of data points should be not less than three data.

3. The domain of the dataset is R.

4. The distance between every adjacent date points should be not
more or less than (1:1.25), or increase at every next subinterval.

3.3. Proof of Smoothness. To prove that the proposed parametric in-
terpolating polynomial C2GBP fulfils the second order of continuity C?, the
following conditions must be satisfied:

(@) P, ,(1)=P;(0) foreach j=L...n-1
(b) P/,(1)=P/(0) for each
(c) P ,(1)=P/(0) foreach;.
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By definition, the first condition (a) satisfied.
In order to investigate the condition (b), the values (1) and (0) are
substituted in the first derivative of Equation (1) which is given by:

Pi(6)=3(1-1)*(p{ = p{)+61(1=1)(p] — p{)+3* (p] = p3). )
Substituting the values (1) and (0) into Equation (9) yields:
Pi(1) = F;,,(0),

which leads to:

J J — o, J+l J+l
P =P>=P —Po

and

Jj+l

bi

J+l1

+p3=pi" +pi

Since p{ = pi*' =W, then

W, -pi=pl"-Ww

Jj°

which means the distance between V; and pJ is equal to the distance be-

J

tween pj ! and W, which is already achieved in Step 7.

In order to investigate the condition P/(1) = P/,

’71(0) in (c) we need to

substitute into the second derivative of Equation (1).
Since  P/(t)=6(1-1)(p; —2p{ + p3)+6t(p; =2p5 +p{) , then
2pf —pl +pi" =2p{" = p{ - p{"".

Since p{ = p{*' then:

2p —pl +pi" -2p/*' =0,

which leads to
j+l J_ J+l J
Py —pi =2pi" —p3).
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This implies the distances (J;) from pf” to p{ are two times

those from p/*' to pJ . Furthermore, the distances between p/*' and pJ are

twice the distances between W, and P4 (or p{“ and ;). Hence, the dis-
tances from p;’l to p{ are (43 ), as shown in Equation (6).

4. Numerical Results. In this section, the numerical results obtained
by the proposed parametric interpolating polynomial in solving test prob-
lems will be compared with the previous studies in terms of accuracy.

4.1. Test Problems. Three test problems (functions) were used to verify
the accuracy of the proposed parametric polynomial interpolation. The obtained
results were then compared with the Natural Cubic Spline (Spline) [27], Cubic
Hermit Interpolating Polynomial (Pchip) [28], Modified Akima Piecewise Cubic
Hermit Interpolation (mAkima) [29], Rational Cubic Ball Interpola-
tion (Ball) [19], and Cubic Natural Curve (Pollock) [15], in terms of errors.

Problem 1:

Function: y =sinx, xe[-3.5,7].

Data points: x =[-3.5,-1.5,0.9,4.2,7].

Figure 3 shows the behaviour of the test function and its comparison
with six other curves obtained by employing six different approximation methods.

Problem 1

0.5

© Data Points
Test Function
—Spline

Pchip
mikima

Ball

Pollock
C2GBP

1 1 1 1 1 1
-4 2 0 2 4 6
Fig. 3. Comparison between six different methods with the test function for

approximating dataset in Problem 1
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Problem 2:
3

. x =2
Function: y =737 ., X€ [—2.52,4.84]
‘x ‘+1
Data points: x =[-2.52,-1.13,-0.12,1.23,4.84]
Analogous to Problem 1, Figure 4 shows the behaviour of seven

curves for the test function and its comparison with other approximation
parametric interpolating polynomials.

Problem 2
4 F T T T T T T T LI
3T O Data Paints ]
m—Test Function
—Spline
2+ Pehip _
mAkima
s Ball
Follock
1r e (905 B P 1
or 4
Rl -
2 4
1 1 1 1 1 1 1 1

-2 -1 0 1 2 3 4 5

Fig. 4. Comparison between six different methods with the test function for
approximating dataset in Problem 2

Problem 3:
Function: y = sinhs—zx , X€E [— 2.72,6.91]

Data points: x = [-2.72,-1.13,0.62,3.73,6.91]

Similarly, Figure 5 illustrates the comparison of the test function
with other approximate parametric polynomials.
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& Problem 3
- — ; ; . : .
14
O Data Points
12 b Test Function
— Spline

Pechip
10F mAkima

Ball
ar Pallock

C2GBP
6 F
4F
ot
0ore & =
2 | | | | | | | | |

-3 -2 -1 0 1 2 3 4 5 5] 7

Fig. 5. Comparison between six different methods with the test function for
approximating dataset in Problem 3

4.2. Error Analysis. Error values can be measured by using one or
more error estimating formulas obtained by calculating the distance on eve-
ry test point on the test curve with the approximate curve over the whole
subintervals. The errors were using 99 test points on the entire curve be-

tween every adjacent data points, i.e. the total number of test points (4)

along the entire curve is /00 n+2 where n+1/ is the number of data points.
Three types of errors were used; Sum of Squared Estimate, Mean Absolute
Error, and Root Mean Square Error (RMSE). Sum of Squared Esti-
mate (SSE) is the sum of the squared differences between each test points
on the comparison curves, defined by:

ssE=3 (v ),

=0

where 4 =100n+2, n is the number of data points, y{ are the test points

on the test curve, and y} are the test points on the approximating curve.
Meanwhile, Mean Absolute Error (MAE) calculates the average difference
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between the lengths of distance between every test points on the compari-
son curves. The formula for MAE is:

N
> | -
MAE ==
2

Finally, Root Mean Square Error (RMSE) measures the square radical
of the squared differences between the gap lengths of test points on the compari-
son curves divided by the number of test points as given in the following formula:

4.3. Results and Discussion. The numerical results show the compar-
ison between the six methods in terms of accuracy. In general, the pro-
posed parametric interpolating polynomial performs better than the other
existing interpolating polynomial considered in this study. Figure 3
demonstrates C2GBP is capable of preserving the curvature compared with
the other five previous methods in Problem 1. An irregular inflexion curve
was detected in Problem 2. The numerical results indicate that C2GBP
manages to handle this situation better than the other methods by produc-
ing the smallest errors as displayed in Figure 4. Figure 5 presents the
numerical results obtained in the employed method for solving the increase
steep of the curve occured in Problem 3. The results show that C2GBP also
excels in non-oscillating curve output since the inner control points are
geometrically constructed. The advantage of C2GBP is that it is able to
control the curvature at subintervals which increases accuracy.

The results of the approximate parametric interpolating polynomi-
als for solving Problems 1-3 in terms of errors are also displayed in Ta-
bles 1 to 3, respectively.

Table 1. Comparison of the new method with the existing methods in terms accuracy
for solving Problem 1
Table 2. Comparison of the new method with the existing methods in terms accuracy
No. 1\/][Ee rtrli)or d Spline Pchip | mAkima Ball Pollock |C2GBP
1 SSE 30.1732 | 22.3251 | 21.4038 | 16.4903 | 18.8969 | 0.9798
2 MAE 0.1438 0.0500 0.0220 0.0753 0.0430 |0.0030

3 RMSE | 4.5673 3.2846 3.4321 2.8704 3.3622 [0.7389
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for solving Problem 2

Error . . .
No. Method Spline Pchip mAkima Ball Pollock | C2GBP

1 SSE 400.5244 | 13.3164 9.2046  [20.3031 | 13.5424 | 2.8842

2 MAE 0.5216 0.1207 0.1030 0.1377 | 0.1283 | 0.0688

3 RMSE | 104459 | 24161 2.0618 27570 | 2.5692 | 1.3780

Table 3. Comparison of the new method with the existing methods in terms accuracy
for solving Problem 3

Error . . .

No. Method Spline Pchip mAkima Ball Pollock | C2GBP
1.9909 x 23463 26544 2.5843 32945 7.1770
1| SSE o <1075 | xpgrs | K0T qpns | <107
5 MAE 10663 9.8778 1.0557 12654 1.4839 49519
+6 +6 +5

x10 x10" x10*° x10 x10*® <10
2.1352 1.9780 21139 2.5340 29716 9.9161

3| RMSE | x1077 10" 10" x10" <107 x10%¢

The errors in terms of SSE, MAE, RMSE in Tables 1 to 3 sug-
gest that C2GBP is the best option to be applied to approximate dataset
in all test problems.

Figures 6-8 illustrate the error rates on all A along approximate
curves by using the RMSE, in order to provide a more accurate descrip-
tion. Curvature amplitude reveals that the error ratio of the curves in-
creases which means the closer the curve to x-coordinate, the less the
error is. It is worth to mention that the error at the dataset is zero since
the interpolating points are the dataset.
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Problem 1
U-T T T T T T
— Spline
06 Pchip 7
mAkima
05| Ball _
Pollock
— C2GBP
04 B
0.3 B
,I"
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01r r\\ I
0 /A. F | )
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Fig. 6. Comparison between six different methods in terms of error ratio using
RMSE for approximating dataset in solving Problem 1

Problem 2
3 T T T T T T
251 — Spline T
Pchip
mAkima
2r- Ball -
Pollock
— C2GBP
151 B
1k -
051
L m
0 /-—-\ 1
2 A 0 1 2 3

3 4 5
Fig. 7. Comparison between six different methods in terms of error ratio using
RMSE for approximating dataset in solving Problem 2

152 WHdbopmaTuka v asTomatuaaumsi. 2021. Tom 20 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (oHnaiH) www.ia.spcras.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

x 10 Problem 3
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Fig. 8. Comparison between six different methods in terms of error ratio using

RMSE for approximating dataset in solving Problem 3

The Bar Graph representation of Tables 1 to 3 are shown in Figures
9- 11, respectively.

Problem 1

SSE

MAE

-Spline
[ Pchip
[ImAkima
[ [EE
[rollock
I c2GBRP

RMSE

Fig. 9. Bar Graph of Accuracy for Problem 1
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Problem 2
09—
081 I spline :
[ Pchip
07k [ ImAkima 8
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I c2GBR
051 :
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02F -
01F -

SSE MAE RMSE
Fig. 10. Bar Graph of Accuracy for Problem 2

% 10° Problem 3

Tr I spline 1
I Pchip

6 _ [ ImAkima -
I Bl
[CPollock 4
I c2GBP

SSE MAE RMSE
Fig. 11. Bar Graph of accuracy for Problem 3

5. Conclusion. This study has successfully constructed a piecewise
cubic Bézier polynomial using a geometric technique to find suitable Bézier

154 WHdbopmaTuka v asTomatuaaumsi. 2021. Tom 20 Ne 1. ISSN 2713-3192 (neu.)
ISSN 2713-3206 (oHnaiH) www.ia.spcras.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

inner control point locations for each sub-interval. The proposed method
gives an approximate cubic Bézier curve representing the dataset with inter-
polating at all data points. The proposed procedure succeeded in achieving
the second-order of parametric continuity between every adjacent sub-
interval of the data points. The newly constructed parametric interpolating
polynomial was then compared with the existing natural cubic spline,
piecewise cubic Hermite interpolating polynomial, modified Akima piece-
wise cubic Hermite interpolation, rational cubic Ball interpolation, and nat-
ural cubic Bézier curve using the same datasets. Three different error testing
methods have been used by taking (100) test points for each sub-interval.
The numerical results show that the proposed method is more accurate than
the other existing methods shown in this study. All the details of the com-
parison have been indicated in tables and graphs for each testing. The re-
sulting curve is very appropriate to find a fit, smooth, and accurate represen-
tation of the data points. The proposed method can also be used in many
applications, as in image processing and geographic information systems.
As well, it is expandable to include many applications in two-dimension.
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M.A. ®AIXEND, 3.5. OMAP
TEOMETPUUYECKHUHN KYCOYHO-KYBUUYECKUMN
HUHTEPIOJISIHIUOHHBI MHOT'OYJIEH BE3BE C

HEIPEPBIBHOCTBIO (2

@aoxeno M.A., Omap 3.5. TeomeTpu4yecknii KyCOYHO-KyOMYeCKHH HHTePNOISIIIHOHHBII
Muorowien Besne ¢ HenmpepbiBHOCTHIO C7.

AnHotanusi. Kpuas be3be — 3T0 mapameTpudeckuil MOJIMHOM, KOTOPBIH NMpUMEHsSeTCs
JUISL TIOJTyYCHHUSI XOPOIIMX METOJOB KYCOYHOW HMHTEPIOJSALHMU C OOJBIINM NPEHMYIIECTBOM
nepes APYTHMH KyCOUHBIMH HoaHHOMaMHu. ClefoBaTenbHO, KPUTHUECKH Ba)KHO HOCTPOUTH
kpuBble besbe, KoTOpble ObUIM OBl TTaAKAMH M MOINH OBl IOBBICHTh TOYHOCTH PEHICHUH.
BOJIBIIMHCTBO U3BECTHBIX CTPATErHil ONpeNeNeHHs BHYTPEHHHX KOHTPOIBHBIX TOYEK JUIS
KyCOYHBIX KpHBBIX be3be 00ecneunBaroT TOIbKO YaCTHYHYIO TNIAJKOCTh, YIOBICTBOPSIOILYIO
NepBOMY  IOPSAKY  HENpephIBHOCTH. HekoTopble  pemieHHss  MO3BOJSIOT — CTPOHUTH
HMHTEPIOSIIMOHHBIC TIOJMHOMBI C TJIAAKOCTHIO IO IMHPHHE BAONL AaNIPOKCHMHUPYIOIIEH
kpuBoii. OJIHAKO OHM BCE €€ HEe MOryT 00padaThiBaTh pACMOJIOXKEHHE BHYTPEHHHX
KOHTPOJIBHBIX ~TOUYeK. YacTHuHAas TIJIaAKOCTh U HEKOHTPOIHUPYIONIEE PACIOIOKCHHE
BHYTPEHHHUX KOHTPOJBHBIX TOYEK MOTYT INOBIUATh Ha TOYHOCTH NPUONU3UTENLHOH KPHBOU
HaOopa paHHbBIX. YTOOBI yIy4IIMTh TJAAKOCTh M TOYHOCTH MpPEIbLIYIIMX CTPATEru,
MpeAjaraeTcss HOBBIH  KyCOYHO-KyOMueckuit MHorowieH bespe BTOporo mopsaka
HenpepsiBHOCTH C’ JUIsL OIEHKH TIPOIYIIEHHBIX 3HAYeHUH. [Ipe/utaraeMplii METOJ] HCTIONB3YET
TeOMETPHYECKOe IOCTPOSHHE /sl MOMCKAa BHYTPEHHHX KOHTPOJBHBIX TOYEK AN KaXKIOro
CMEKHOTO TOABIHTEpBada yKa3aHHOTO HaOopa NaHHBIX. He Tombko mHpenymaraeMslii MeTox
COXpaHsSeT CTaOWIBHOCTh M TIAAKOCTh, aHAIH3 OIMMOOK YHCICHHBIX pE3yJIbTaTOB TAaKXKe
MOKa3bIBAaeT, YTO PE3yJIbTHPYIOIIUH HHTEPHONUPYIOMUH MONHHOM Oojee TOYeH, YeM Te,
KOTOpBIE MOIY4EHBI C TIOMOIIBIO CYIIECTBYIONINX METOI0B.

Kiouesble cioBa: [TonnHoMm uHTepronsuuu, Kpusas beswe, crutaitn besbe, SSE, MAE,
RMSE
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