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Abstract A problem of searching a minimum-size feature set to use in distribution of
multidimensional objects in classes, for instance with the help of classifying trees, is considered.
It has an important value in developing high speed and accuracy classifying systems. A short
comparative review of existing approaches is given. Formally, the problem is formulated as
finding a minimum-size (minimum weighted sum) covering set of discriminating 0,1-matrix,
which is used to represent capabilities of the features to distinguish between each pair of objects
belonging to different classes. There is given a way to build a discriminating 0,1-matrix. On the
basis of the common solving principle, called the group resolution principle, the following
problems are formulated and solved: finding an exact minimum-size feature set; finding a feature
set with minimum total weight among all the minimum-size feature sets (the feature weights may
be defined by the known methods, e.g. the RELIEF method and its modifications); finding an
optimal feature set with respect to fuzzy data and discriminating matrix elements belonging to
diapason [0,1]; finding statistically optimal solution especially in the case of big data.
Statistically optimal algorithm makes it possible to restrict computational time by a polynomial
of the problem sizes and density of units in discriminating matrix and provides a probability of
finding an exact solution close to 1.

Thus, the paper suggests a common approach to finding a minimum-size feature set with
peculiarities in problem formulation, which differs it from the known approaches. The paper
contains a lot of illustrations for clarification aims. Some theoretical statements given in the paper
are based on the previously published works.

In the concluding part, the results of the experiments are presented, as well as the
information on dimensionality reduction for the coverage problem for big datasets. Some
promising directions of the outlined approach are noted, including working with incomplete and
categorical data, integrating the control model into the data classification system.

Keywords: Multidimensional Data, Classification, Feature Selection, Minimum-size
Covering Problem, Group Resolution Principle

1. Introduction. One of important applied problems in data mining,
control and system analysis is reduction of the feature set used in a
model (e.g. classification or recognition ones). This problem attracts serious
attention [1-5]. There are three common groups (and their combinations) of
methods to realize feature set reduction including filtering, wrapper, and
embedded methods. They give different results from the viewpoint of
accuracy and computational complexity.

Filtering methods [6, 7] are computationally effective but do not
provide (in general) classification and prognostic accuracy of the model,
because, for instance, they do not take into account (in general) the internal
links between features, e.g. multigroup co-relation coefficients and
dependencies.

The main idea of the filtering methods is to estimate feature
ratings (weights) W and use some threshold to remove features with small
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ratings. A good and widely known filtering method is RELIEF [8]. In this
method, for each sample object Ob, and each feature f, one defines the
nearest object Ob, from the same class (say, 4) and the nearest object Ob,
from the opposite class (say, B) for two-classes classification problem.
Obviously, feature f, differs between 4 and B quite well if its value for class

A is clearly greater than its value for class B. This observation constitutes the
idea of RELIEF method which uses iterative process to re-evaluate feature

S, weight W[f,] by adding to it the value of diff (f,,0b,,0b,)/ m and
subtracting the value of diff (f,,0b,,0b,)/ m, where diff (...) stands for the
distance between two objects with respect to feature f, and m denotes the

number of pairs (0b_,0b,), ((Ob,,0b,)).

Besides RELIEF and its modifications, one can mention principal
component analysis [9], supporting vector machine and other feature scoring
methods [6, 10].

The other group of methods is united under the title wrapper
methods [11, 12]. They estimate quality of the feature set {1, f,,..., f,} for

instance by learning neural network with the inputs f;, f5,..., f, and providing
the following assesment of the resulting classification accuracy. This technique
is extensively consuming computational resources and cannot be recommended
for big feature sets as it requires to consider 0(2%) feature subsets to reveal
the smallest one with satisfying classification capabilities (where d stands for

the total number of the features).

To smooth drawbacks of the above two groups of methods the
embedded methods were suggested [13]. A good example is C4.5/CART [14,
15] methods based on information gain calculations in clasification trees.
Suppose that each of the objects belongs either to class A or to class B (but only
to one of them). Next suppose that one selects attribute (feature) £, to split all

the objects accordingly to value of /. To simplify our considerations, admit
then that 1), €{0,1}. Now divide all the objects into two subsets: [, where
f, =0, and f; where f, =1. In general, the representatives of initial classes
4 and B may be among samples in f,, and f,. In GINI-index based method
[16] (which lies in the basis of CART — classification and recognition tree) a
quality of the splitting is associated with the score value

n.
h; =1—Z‘4/_EA’B(| fj |)2 computed for each subset fyi where n,(n,) stands
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for the number of objects of class 4 (class B) in f)’i and | fyi | denotes
cardinality of fyi . It is accepted that the best selection corresponds to attribute
J, minimizing average value of /, (/).

One can then split f|

y

o and f,, in the similar way with the help of

another attribute, say f,, and so on in order to build a classifying tree with

the attributes located in its nodes. Clearly, this heuristical approach delivers
in general not optimal solution, that is, the set of attributes defined
accordingly to the method may not be a minimum-size one. The main
advantage of this embedded method is that it has good computational
characteristics and results in the ready-to-use classifying tree.

However, there is no common platform in the above groups of
methods regarding possible peculiarities in problem specification. These
peculiarities are linked, for instance, to data fuzziness, weightedness, possible
redundancy, incompleteness, quantitative nature, big sizes, efc.

The goal of the paper is to propose such a platform. It uses a technique
to solve a 0,1-matrix covering problem on the basis of some common
principle (called group resolution principle — GRP) applicable to the different
problem specifications including (among the others):

—finding an exact minimum-size feature set;

—finding a feture set with minimum total weight among all the
minimum-size feature sets;

—finding an optimal feature set with respect to fuzzy data;

— finding statistically optimal solution especially in the case of big data.

Among the advantages of this platform are also eliminating feature
redundancy problem and possibility to deal with qualitative data. This may
serve a good starting position for future investigations in the marked areas.

2. Discrimination Matrix. Suppose, a normalized data set is
given (Table 1). There are 2 classes (4 and B), 6 features {f,, f5,..., fy} and

8 objects {i,i,,...,ig}. Our task is to define a minimum-size feature set and

build a classifying model, for instance, in the form of a classifying tree or a
neural network.

Let us give a general formal statement of the problem. Denote by
D; =< fi1, fizs--» fix, C; > the ith row (i=1,N) of the data set with the

corresponding feature values f;, (quantitative data, p=1,K), and C,

standing for the class label. Without loss of generality we shall use two
classes. Denote by Ob; =< f,, fi5,-.., fix > the ith object (in vector form) of

the data set. Let us require the following conditions to be true:

3ras(C, #Cy), 1<r,s<N, (D)
Vrvs(C, #C,)— Ob, # Ob,. )
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Table 1. The normalized data set

A S f3 fa fs fs Class
i 0.8 0.5 0.0 0.77 0.33 0.33 A
i 1.0 0.5 0.5 1.0 0.0 0.0 A
I 0.4 0.25 0.5 1.0 0.0 0.0 B
Iy 0.2 0.0 0.75 0.0 0.0 0.66 B
is 0.7 1.0 0.75 0.44 1.0 1.0 A
I 0.0 1.0 1.0 0.44 1.0 0.83 B
iy 0.0 0.5 1.0 0.33 0.66 0.83 A
g 0.4 1.0 0.75 0.44 0.33 0.66 B

Let mc{l,..,K} be some set of the unique integer indices and
f(m) stand for the (sub)set of the features with indices from = . Let Ob, (1)
denote new vector obtained from Ob, on the features f(w) . The feature set
minimization problem is stated as to find = with minimum power |=|
providing:

Vrvs(C, #C,) — Ob,(r) # Ob,(r). 3)

Clearly, condition (3) warrants that one can build a classifying
tree (CT) for the data set using the features from the covering set . We,
however, omit the question about the sizes of CT leaving it for experiments.

Consider an arbitrary column in the normalized data Table (e.g.
column f).

Definition 1. Feature f, discriminates between two objects x € 4 and
yeB ifandonlyif f, # f,.

We shall also use another notation (i.,f,) instead of f,,. For
example, f; discriminates between (i,,f;) and (i,f;) and does not
discriminate between (i, ;) and (i, f}).

Notice 1. Discrimination between the same classes is not considered
as it has no sense.

Notice 2. As features may be incorrectly defined due to differnt
reasons, one may use level A>0 of discrimination (A has rather small

positive value) and consider that feature f; discriminates between two
samples x€ 4 and y € B ifand only if f, 2 (f,, +4A) or f, <(f,, —A).
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Now one is in position to build a discrimination matrix DM with
elements dmy; =1 if and only if feature f, discriminates between samples

i and j; otherwise dmy; =0 (take into account Notice 1)

This matrix is given by Table 2. The columns containing only «1s» or
«0s» are deleted as redundant.

Table 2. Reduced matrix DM

1,8 2,3 2,4 45 5.6 58 6,7
/i 1 1 1 1 1 1

5 1 1 1 1 1
S 1 1 1

fa 1 1 1 1
Js 1 1 1
fe 1 1 1 1 1

The rows correspond to the features. Each column is represented by
pair (i, ) with i and j specifying rows in Table 1. For instance, consider row

f, and column (5,6) with «0» (empty value) at the intersection. This situation

means that feature f, does not discriminate between rows 5 and 6 in Table 1.
Definition 2. Row a covers column b if a contains «1» in column b.
Definition 3. A set of rows n={q,,a,, ..., a.} is a covering one for

DM if for each column b from DM there is at least one row from = that covers
b.

We are interested in a minimum-size covering set 7. In our example,
one of the minimum-size covering sets is m={f,, f,}. So, instead of 6

features it is sufficient to use only 2. Basing on the found feature set, one can
build a CT with the Python script given in Appendix.

One can prove then the next

Proposition 1. Any minimum-size cover r of the matrix DM defines
the corresponding minimum-size feature set.

Proof. Any proper subset n of n(n" =n) does not cover some
column in DM. Let this column be (7, j) and let row i belong to class 4 and

row j belong to class B. The values of the features from " are the same
both in objectsi and ;. By this, it is impossible to uniquely define by means

of features 7" to which classes i and j belong.
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It is a well-known fact that finding a minimum-size covering set of
0,1-matrix is NP-complete problem. We shall consider some exact method
for its solution with polynomial efficiency in average. This method uses a
group resolution principle suggested and substantiated in [17, 18].

3. Group Resolution Principle (Method). Group resolution
method enables one to find a minimum-size covering set of a 0,1-matrix
B. It represents an iterative process, with unique covering sets , found
at each iteration by means of some heuristic technique. The following
heuristic method may be used: at each iteration ¢ find a column (amidst
those remained undeleted) with minimum number of 1s. Let this column

be r,. Call r, a syndromic column. Then find arow f, (amidst undeleted

rows), covering 7,, with maximum number of units. Call the unit
element («1») at the intersection of row f, and column 7, a syndromic
element. Include f, into a covering set formed at the iteration ¢ . Delete
then all the rows containing 1s in the column 7,. Also delete all the
columns covered by row f,. The gth iteration continues till there remains

at least one undeleted column.
For each =, a special (syndromic) matrix is being built. From that

matrix, one finds a new column-resolvent and adds it to B to contract the
search area. The process repeats till an empty resolvent is generated. It is
warranted that sooner or later a totally zero resolvent will be generated what
indicates to finishing of the GRP. The best solution found to this moment
represents a minimum-size cover.

To explain the details of the group resolution method, let us consider
an example of some DM (Table 3a, excluding columns w and res, ).

Table 3. Example of 0,1-matrix («) and syndromic submatrix ()

a) b)
W |Cl |[C2 [C3 |C4 [C5 |C6 [CT | €8 |C9 |Cl0 |reSi Cl |C2 |C4 [C10
A4t 1 1 1
]2 1|11 1 1
fi |5 1 1|1 1 1
fi |6 1 1 1 1
fs |21 1 1 1 1
fs |3 1 1 1 1|1 1 11111
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Thus, select column ¢, and covering it row f; include into m,. Then

delete the rows and columns as explained above and get the next
matrix (Table 4).

Table 4. GRP in action

() Cy Cs Cq Cg €10
S 1 1 1
S3 1 1 1
fa 1 1 1
fs 1 1 1

Now select column ¢, and row f,. Extend current cover to
n, ={f5, f4}. Delete the rows and columns with respect to this new selection:
namely, delete columns ¢,,cq,c; and rows f,, f;.

Acting by analogy (select column ¢, first and ¢, next), form the
resulting covering set m, ={f, f;, />, f3}. This solution was delivered by

heuristic method without warrants of optimality. The essence of this heuristic
method (introduced by A.D. Zakrewsky and here slightly modified) is to select
the columns with minimum number of units first and in those columns find a
covering row with maximum number of units. It is time now to generate a
logical consequence of the columns ¢,,¢,,¢,, ¢, — their group resolvent. To

do this, let us select submatrix of the initial matrix with columns ¢, ¢,,¢,,¢,

(Table 3b). This submatrix is called syndromic. A group resolvent is a new
column defined according to the following rule (RSA): it contains 1s only in
the rows of syndromic matrix with two or more 1s. Add this resolvent ( res, )
to initial matrix in Table 3a.

Now perform the second iteration (¢ =2 ). Omitting the details,

find m, ={f;, f;, 3} with syndromic columns res,,c,,cscorrespondingly.
To produce a new group resolvent, form syndromic matrix for this cover
with columns res;,c;,cs and rows f, .., fs;. According to RSA, the
group resolvent is empty. The entire process terminates with the best
solution found — ©, = {f;, f;, f3}. This solution stands for a minimum size

cover, we have been looking for. Theoretical backgrounds of GRP can be
found in [17, 18].

The computational complexity estimation of GRP is given in the final
part of the paper and testifies to its polynomial properties in average with the
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required number of iterations submitted to expression [17] O[n-m-p ],

lI-p
where n (m) stands for the number of rows (columns) in original matrix DM
and p is the density of units (i.e. the number of units divided by n-m ) (p is
supposed to be not close to 0 or 1).

The evident drawback of the described method is continuous growth
of the matrix sizes due to adding of new group resolvents. Now we introduce
a new technique to eliminate this drawback within the frame of enhanced
version of GRP.

4. An Enhanced Version of GRP. The following material is based
on [19]. In the method realizing enhanced version of GRP new group
resolvents (starting from some time point) are not added to matrix B as
additional columns but overlap some previously generated resolvents. The
total number of the added group resolvents does not exceed the number of
rows in B.

Provide the following reasoning. Let a cover n;, was found at iteration
I by sequantial including rows a,,a.,, ..., 0,. Suppose that new iteration
i+1 entirely repeats the previous iteration i . This means that the same
syndromic columns and the same rows a,;,0.,, ..., o, are selected in the same
order including some additional new row(s). At the moment of including row
o, into m,,, (o, isthelastonein m; ) matrix B cannot be entirely destroyed,
otherwise one gets =; ==, which is impossible according to GRP
theoretical properties [17, 18]. This means that at least one column B should
remain undeleted and 3 is not covered by any one of rows ao,,,, ..., o, . But
column B must be at this moment totally zero as all the rows having «1s» in
B will be deleted (because the same syndromic columns are selected for rows
Q,,0,, ..., 0 atthe iterations i and i+1). Evidently, this is impossible and
enables one to come to one of the next conclusions:

— either 7, has less than & rows
or

— at one of the steps 1,2,...k when forming cover m,, in the

selected syndromic column there would be smaller amount of units in
comparison to the syndromic column selected at the same step while forming
cover T,.

This decisive reasoning enables one to restrict the number of added
group resolvents by only those ones which were used as syndromic columns
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at the current iteration of GRP. Obviously, the total number of these
syndromic columns cannot exceed the number of rows in B. The rest group
resolvents which were not used as syndromic columns at the current iteration
of GRP can be excluded without loss of solution. One can use any one of the
excluded columns to replace it with a new group resolvent (this means that
new group resolvent simply overlaps the old column without extending
current matrix B sizes).

Thus, the enhanced method enables one not to exceed the memory
region restricted by 2-dimension array with m rows and N+m
columns (where N stands for initial number of columns in B ).

We now consider the weighted case of GRP [18]. One may be interested
in finding among all minimum-size covering sets that one with maximum total
weight (representing sum of the weights of rows (features) from this covering
set). It is important in the case when new samples not included in original data
set should be classified later. A feature weight represents in general a score
evaluating its classifying capabilities. The general idea is that the greater the total
weight of the selected features, the less likely it is to re-train the classification
model. We introduce a specific formulation of the covering problem and solve it
by means of the modified GRP version.

5. Weighted Case of GRP. Suppose, each row i of 0,1-matrix B is
assigned an integer weight w,. Formulate a problem as to find from all

. . . *
minimum-size covers of B acover m such that:

VrVs(C, #C,) = Ob,.(n ) # Ob (T );
In((n] < |7 |) & VrVs(C. #C,)— Ob, (1) # Ob (n)); @
z w; — min,

where C,, C, belong to class labels in the data set D ={Ob,}, i =1, N.

This formulation is different from a classical one which requires to
find a cover m, (not obligatory a minimum-size one) with a minimum sum of
the weights of rows in m,. Clearly, the weights w, may initially be defined
as negated RELIEF-weights. To solve a problem, we address to weigthed
case of GRP and modify it to meet our goals. The idea behind the method is
to use GRP as in section 3 to find a minimum-size cover 7, at the iteration
k and then on the syndromic matrix, corresponding to m,, build a new group

resolvent res (in a new fashion described in [18]) such that if an optimal
solution has not been found yet, it would cover res. For the details, let us

1206 Wndopmatyka n aBTomatunsaums. 2020. Tom 19 Ne 6. ISSN 2713-3192 (ney.)
ISSN 2713-3206 (oHnainH) www.ia.spcras.ru



MATHEMATICAL MODELING, NUMERICAL METHODS

consider an example from Table 3a again with additional column w
representing the row weights.

The procedure finds a minimum-size cover first. It is the same as in
unweighted case of GRP. We previously found a minimum-size
cover m, ={f¢, 1, f3} with syndromic columns resy,c,Cs

correspondingly (Table 5).
Table 5. Weighted syndromic matrix

G Cs res; w
S 1 4
S 1 2
e 1 5
Sa 6
Js 1 2
fs 1 3

The weight of the cover m, is denoted as w(n,)=4+5+3=12. To

form a group resolvent, we use rule RSB suggested in [ 18] with peculiarity of
the syndromic matrix having no rows with two or more 1s. Namely, divide

the rows into two subsets SR. and SRY. Subset SR! contains those rows
with no more than one unit in each of them. In our case due to observed
specificity of syndromic matrix, SRTI[ coincides with the set of all rows, i.e
SR ={f., fysnfs}. Subset SR! contains the rest rows of matrix B, not
belonging to SRV{. In our case SR,{I =.

Now define the low boudary LB(m,) by means of the cover
n, ={fs, fi-f3} and its syndromic matrix. Denote set of columns of
syndromic matrix by Q(m,) . Let us for each column z from Q(n,) denote
by p(z) the row in SR,i with minimum weight which covers column z.

Then

LB()) = 3 gy W(P:)- (5)

In the example, LB(n,)=2+2+3=7.Now let us compare
LB(m,) =7 and the weight of the cover m, w(m,)=12.
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Proposition 2.
1. If with respect to the current cover m; w(n,) < LB(w;) then in

supposition that m, is not optimal solution, each optimal solution contains at

least one row from SR” . Consequently, for this case, if SRY =@ then m,is
an optimal solution.

2. If w(n,) > LB(n;) then one needs to move minimum number of
rows from SR. (no one should belong to current cover =) into SR” to
provide.

—w(m;) < LB(m;);

— conditions for RSB to generate a group resolvent as a column with
the units standing only in the rows belonging to SRT[[[.

The easiest way to provide 2b is as follows: for each column ¢, in
Q  find the corresponding value A =w,, (x)—w,, (x), where
Wiax (£) (Wi (%)) 18 the maximum (minimum) value of the weight of some
row covering column c,. If there is only one row o covering ¢, or A, =0
then this column is ignored. In the example (Table 5), one has
A = 4-2=12, ACS =5-2=3. Find maximum value among A, . In the

(&

example, this is A"s' Consequently, one needs to transfer row f, (covering

¢s and having minimum weight value) from SR! to SR”:

SR = {1, fyres fi}s SRY = (£} This transfer leads to
LB(n,)=2+3+5=10<w(m,)=12. It is necessary to make one more
transfer. There remains only one possibility: to transfer row f; (covering ¢
and having minimum weight value) to
SR SRy =i, f5o fur fobs SRS = {2 S5}

Now LB(n,)=4+3+5=12=w(m,) =12 and one can build a group
resolvent res, with the units only in the rows f,, f;. Add this resolvent to

original matrix in Table 3a and resume searching a minimum-size cover.
Point 2 of the Proposition 2 can be reformulated in a stronger form.

Namely, let w  denote the minimum weight of the best minimum-size
covering set ©~ found at the previous iterations and w(,) as earlier stands
for the weight of the current minimum-size cover. Then the strengthened
form of proposition 2 is as follows:

Proposition 2 (strengthened form) [18].
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1. If with respect to the best cover = and the current cover T,
w < LB(r,) then in supposition that 7" is not optimal solution, each optimal
solution contains at least one row belonging to SR,{I . Consequently, for this
case, if SRY =@ then =" is an optimal solution.

2.Ifw > LB(m;) then one needs to move minimum number of rows
from SR’ (no one should belong to current cover r, ) into SR” to provide.

—w'< LB(m,);

— conditions for RSB to generate a group resolvent as a column with

the units standing only in the rows contained in SRT'[' .

Proposition 3. New resolvents generated by the rules of proposition 2
may be overlapped in the iterations of GRP as in the unweighted case of GRP
(that is, in the case they are not used as syndromic columns at some future
iteration(s)).

Proof. From syndromic matrix one has got a new column — group
resolvent res,. It excludes current minimum size cover 7 . Consider next

iteration x+1. Again, as previously,

—either at one of the steps 1,2,...,k when forming next cover =n,, in
the selected syndromic column there would be smaller amount of units in
comparison to the syndromic column selected at the same step while forming
cover T,

or
— m,,, haslessthan £ rows.

The last is impossible since 7, is a minimum size cover. Therefore,

there remains the first possibility directing the computations in a new way
previously not passed. This notice remains valid with respect to any new
group resolvent with no relation to the previously added group resolvents
provided that they were not used as syndromic columns at the current
iteration of GRP. This observation also provides finiteness of the searching
process.

Now we have all necessary rules to lead the searching process to its
finish. Omitting the details, the next cover is {f;, f5, f4, f>} With syndromic

matrix shown in Table 6a.
Add new resolvent res, (Table 6a) to original matrix (instead of

res,, since res,was not used as syndromic column) and resume a search.
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Perform new iteration of GRP. Now one finds 7, ={f,, fs, f} with total
weight w(m,,)=9 and syndromic matrix given in Table 6b. For this
syndromic matrix one comes to a conclusion about optimality of 7, (as its
group resolvent is empty and 7 g, has minimum total weight among the

previously found minimum-size covering sets).

Table 6. Syndromic matrix for {fs, f5, f, f2} with resolvent res3 (a) and syndromic
matrix for i = {f1, f6, f2} With empty resolvent (b)

a) b)

& Cs Cg res, res, Cy Cs ress w
fi 1 1 1 1 4
S 1 1 2
/s 1 1 5
Ja 1 1 6
fs 1 2
Js 1 1 3

6. Fuzzy Case of GRP. Now suppose that some samples in original
data set are characterized with fuzzy measure p (1) of belonging to class

A (B). This supposition leads to a discrimination matrix with elements from
diapason [0, 1]. Indeed, if some feature f_  discriminates between row r and

row ¢ (standing for the objects i., i, from different classes, e.g. 4 and B
respectively) then at the intersection of row f, and column (r, g) of DM
one places the value of u(f,,7,q) =p, (i) pz(i,). The covering problem

now should be reformulated as described below.
Definition 4. Let row a contain p(a,b) > 0 in column b. Then they say

thatrow a covers column b in a fuzzy mode with fuzzy measure 1 ,(a,b).
Definition 5. A set of rows m={qa,,a,,...,a,} is a covering fuzzy set

for DM if for each column b from DM there is at least one row from r that
covers b in a fuzzy mode.
Let n ={qa,,qa,,...,a,} beafuzzy covering set. Define for each column

j of DM the value v ,(m) = max(u(f;, /). 0(fs. /): - » Wiy ) Where 7
stands for the number of columns in original DM.
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Definition 6. An optimal minimum-size fuzzy covering set ©" is
defined as that one having 1) minimum number of rows among all fuzzy
covering sets for DM and 2) providing maximum value of

¥.= ZFLWV (@)
Formally,

VrVs(C, # C,)— Ob, (') # Ob, (T );
In((n] < |7 |) & VrVs(C. #C,)— Ob,(r) # Ob,(n)); (6)

.
‘I’n* = Zj:I,ij(n ) — max,

where C,, C, belong to class labels in the data set D ={Ob,}, i =1, N.

Notice 3. It is important to emphasize that group resolvents added at
the iterations of algorithm with fuzzy matrix DM do not influence upon the
value of ¥ _.

To find an optimal minimum-size fuzzy covering set, one can use a
slight modification of GRP for the weighted case considered above
practically basing on the same ideas. Again, let us take a matrix (Table 7) as
an example to illustrate the details.

Table 7. Fuzzy matrix DM

G () G Cy Cs Ce ¢z Cg Cy €10
fi ] 06 1 0.8
f 09 | 09 1 1
£ 0.8 0.7 | 0.5 0.7
fa 1 0.5 1
fi | 08 0.8 1 1
Je 1 1 1 1 0.9

First, one is looking for some minimum-size cover (with no regards to
its weight W ). This process has a peculiarity when making group resolvents

only. One is acting as though fuzzy elements are crisp-valued (as in GRP).
Namely, find column with minimum number of non-zero elements (it is a
syndromic column). Then define a row with maximum number of non-zero
elements which covers this column in a fuzzy mode. Then reduce the matrix
according to the GRP rules and continue till the new covering set is defined.
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The first covering set w, = {f, f4, />, f3} with the syndromic columns
€;,Cy,C4,Cpo- Find their group resolvent (Table 8a).

Definition 7. A fuzzy group resolvent is defined as that one, containing
units in the rows with two or more non-zero elements in syndromic matrix
TOWS.

Thus, in Table 8a the fuzzy resolvent contains the only unit in row f;.

This phase finishes with an empty resolvent found on the last
syndromic matrix. Now, a new group resolvent should be generated to
provide condition 2) in Definition 6. For clearness, consider the covering set
n, ={fs. /i, f3} with fuzzy syndromic columns res,,c,,c; (Table 8b).

Let us formulate the rule RSC for the fuzzy case of GRP.

1. If in the syndromic matrix for the last minimum-size cover there are
no fuzzy elements (different from 0 and 1) then optimal solution is found
corresponding to the best solution found in the previous iterations including
the last one. Otherwise.

2. In each column of the syndromic matrix mark (with «*») all non-
zero elements with the values higher than the value of the syndromic
element in this column (see Table 9 as an example). If there are no marked
elements then algorithm finishes with optimal solution, corresponding to
the best solution found in the previous iterations including the last one.
Otherwise.

3. Form a new group resolvent as a column containing units in the
rows with marked elements and zeroes in the rest rows.

Table 8. Fuzzy syndromic submatrix DM with fuzzy group resolvent resi (a); Fuzzy
syndromic matrix for w2 = {fs, f1, f3} (b)

a) b)
G c, Cy Co res; G Cs res,
fi | 06 0,6
12 0,9 0,9
S5 0,7 0,7
Jfa 1
fi | 08 0,8
Js 1 1 0,9 1 1

After forming a fuzzy group resolvent add it to the current matrix DM
and resume iterations.
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Again, the column-resolvents may overlap the previously built group
resolvents provided they were not used in syndromic matrix. Therefore, the
finiteness of entire process is based on the following fact.

Each time when iterations resume after adding new group resolvent,
the computations are being performed in a new direction (see proof of
Proposition 3) due to the following decisive point: at one of the steps
1,2,..., k when forming next cover m,,, in the selected syndromic column,

there would be smaller amount of units in comparison to the syndromic
column selected at the same step while forming cover ..

Table 9. Fuzzy resolvent (rule RSC)

0 g tont
A 0,6
1 0,9* 1
S5 0,7
Ji
/s 0,8* 1
Js 1

7. Approximate Covering Procedure. One can restrict the GRP
iterations before getting empty group resolvent as was shown in [17, 18]. Let
us reproduce some estimations of complexity of approximate covering
procedure. Denote by n (m) the number of rows (columns) in DM; let p
stand for the density of units, that is, p is equal to the total number of units
in DM divided by (n-m) . Let k stand for the covering set size. Accordingly
to [17, 18], the number of iterations required in order that mathematical
expectation (4, ) of the number of covers with k& rows becomes M, <1
can be defined from the condition:

(n+0.5)‘1nn—(k+0.5)‘lnk—(n—k+0.5)‘ln(n—k)+i~n— L
12 12k+1 (7
1 )

-m-In(l-g,)<-1.5,

C120-k)+1
where
g =(1- L x -2y xqa-—L"1 (8)
n n—1 n—k+1
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These relations are obtained in supposition that in «average case» the
density of units in the group resolvents is approximately the same as p what

is confirmed for quite a big amount of experimental data (excluding extreme
cases with very low density p or its closeness to 1).

Formulas (7), (8) enable one to stop iterations before getting an empty
resolvent. The estimation of the number / of iterations is of the form:

2242 2242

m-p-(n—In( 5 — )*-1))
=0 ; 9
I-p
which can be simplified to
[:O[m-p-(n+2.4l)} (10)
I-p

Here, z can be selected from the well-known rule of « zo » (e.g. z=3
or higher). The rule of «30 » means that a value of a normally distributed
random  variable X with  mean X falls in  the

mean
diapason [x, .. —3-0,x,., +3-c] with a probability close to 0.997.

So, in average the approximate method behaves itself like a
polynomial computational method for a given density p of units (see the
concomitant considerations in [17, 18]).

Now consider the last question: how to restrcit the original number of
samples in the learning data set.

8. Restriction of Data Set Sizes. For multi-dimension data one can use
g¢—nets (see for instance [20]) with nodes covering data samples in the
following way: for each multi-dimension data object there exists one and only
one node in ¢ —net the (Euclidean or other) distance to it does not exceed e.
Building ¢ —net is again a minimum-size covering problem. So, in order to
simplify computational expences one can use K-nearest neighbors method (see
papers review [21]) to build K >0 clusters such that each data object gets
directly to one and only one cluster. We do not restrict this formulation by the
condition that K should have a minimum value. Then one can use the cluster
centroids instead of data objects from original data set [22]. This gives us a
solution to reduction of the sizes of discrimination matrix.

mean mean
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Another possibility is connected to use random sampling technique
developed in applied statistics. This approach, and the previously mentioned,
need special attention.

9. Experiments. For estimation of the described approach on the basis
of GRP and minimum-size matrix covering technique we used
DecisionTreeClassifier (DTC) and RFECV (recursive feature elimination
with cross-validation) methods provided by Python programming language.
Comparative results with DecisionTreeClassifier are placed in Table 10, with
RFECV — in Table 11. The original data sets contained two classes with
randomly generated binary vectors and unit density randomly chosen from
diapason [0.2, 0.5]. The first column in Tables 10, 11 indicates to original
amounts of features and samples. The second and the third columns define
the resulting amounts of features found by the corresponding method. The
order of the numbers (experimental results) in the second column corresponds
to the comparative results of the same experiments in the third column for
each row of the Table.

The calculation time of each experiment with GRP was in the worst
case three times longer compared to the DTC method but did not exceed 10
seconds on IBM Pentium 2.1GHz.

Table 10. Comparative results with DecisionTreeClassifier

Features, samples Feature set sizes Feature set sizes
(original Data set) found with GRP found by DTC

15, 100 7,9, 14 14,14, 15

20, 100 9,897,127 16, 18,18, 14,17, 15
30, 100 9,9 20, 23

40,100 8,09, 12 17,19, 20

50, 100 9,10, 8 21,20, 19

Table 11. Comparative results with RFECV

Features, samples Feature set sizes Feature set sizes
(original Data set) found with GRP found by RFECV
20, 100 17,14,10,9 18, 16,12, 13

30, 100 10,11, 13 13,14, 14

40,100 12,12,9,9 14,15, 10, 12

50, 100 12,7,16 14,8, 19

One can see that GRP provides stable superiority over Python
techniques with practically acceptable computation time. Developing the
ideas of the section 8 of this paper, we also performed experiments with
big data sets containing 300 multidimensional binary objects (vectors)
what exceeds the predefined limitations on our program for GRP-based
solution technique. In experiments, two classes of objects were generated
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with different mathematical expectation and standard deviation. The best
results were obtained for 20-30 clusters with classification accuracy near
90%. However, increasing the number of clusters did not improve
accuracy of classification and even worsened it. This problem remains
open for further investigations.

A series of 30 experiments was conducted to find out relations
between original features amount (OFA4{20, 30, 40, 50, 60}), number of
objects (N {80, 100, 120, 130, 140, 150, 160}), minimum feature
amounts (FAGRP) found by GRP-based covering technique and number of
nodes in the classifying tree (Nnod) created for FAGRP and N. There were
generated two classes of objects with predefined probabilities of units for 0,1-
valued features. The following conclusions can be made:

1. FAGRP = O(k - OFA**) with a constatnt k in [0.8-3.0] (in majority
of cases k is near to 1.5).

2. Nnod depends on FAGRP (OFA) in unstable mode within given
0,1—distribution of the feature values and fixed N (Table 12a).

3. Nnod has no clear tendency to growth with increasing N and fixed
OFA as is illustrated by Table 125.

Table 12. Results of experiments (N = 100) (a); Results of experiments for different
N € [100, 160], OFA =40 (b)

a) b)
Features, Features,
samples samples
(original Data FAGRP | Nnod (original Data FAGRP | Nnod
set) set)
20, 100 7 41 40, 100 6 41
30, 100 7 55 40, 120 9 115
40, 100 6 35 40, 140 8 83
50, 100 9 39 40, 150 9 63
60, 100 23 87 40, 160 8 67

As the last example, consider feature set reduction in image
recognition. An original image represents digit «4» placed within a square
divided by cells (Fig. 1). Each cell in Figure 1 stands for the feature f.

Initially, there are 64 features. Each feature is either zero (no part of the
digit «4» is within the corresponding cell) or unit (the cell contains some
part of the digit «4»).

One can randomly distort the image by clearing some cells with parts
of the digit or painting empty cells like in Figure 2. In experiments, we
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randomly obtained 50 distorted images of the digit «4» with the slight
modifications (cluster 4). Also there were generated 50 random samples with
chaotic distribution of the empty and colored cells (cluster B). The GRP-
based method left 23 features accordingly to minimum-size cover of the
discriminating matrice. This result was obtained practically instantly for a
single GRP-iteration despite the big sizes of the discriminating matrix (64
rows and 2500 columns).

TS
f

Fig. 1. Recognition of the digit «4»

fiaarg
f

-+

Fig. 2. Distorted image

10. Conclusion. The total approach outlined here competes well
with the known methods and gives better solutions in majority of cases
especially with big initial amounts of the features. It makes possible to
operate with discrimination matrices with some hundreds of features (this
amounts to 300 in our program). To extend the practical boundaries of the
realized technique it was suggested to use clusterization of the input data
sets which showed promising results, although they are needed in future
investigations. The GRP-based approach may serve a common platform for
different feature selection models and can be extended in the following
directions: processing incomplete (impure) data, processing qualitative
data, integrating control models in classification process, modeling
practical systems in different areas etc.
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Appendix. By means of Python programming language let us build a
classifying regression tree (CRT) on the reduced feature set with two features
fi» /> One can use the next Python script (List. 1) which can be applied in

general case for n > 2 features.

import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
# Create datasets
X =np.array([[0.8, 0.5], [1.0, 0.5], [0.4, 0.25], [0.2,
0.0],[0.7,1.0],[0.0,1.0],[0.0,0.5],[0.4,1.0]])
X_test = np.array([[0.94, 0.5],[0.85,0.3],[0.3,0.3]])
Y =np.array([1.0,1.0,0.0,0.0, 1.0, 0.0, 1.0, 0.0])
# Fit model
regr 1 = DecisionTreeRegressor(max_depth=2)
#regr 2 = DecisionTreeRegressor(max_depth=5)
regr 1.fit(X, Y)
# Predict
y_1 =regr l.predict(X_test)
printy 1

Listing. 1. Python code to build classification tree

The columns f|, f, in Table 1 are represented as array X (features)
and Y (classes). The regression tree is created in operator:

regr 1 = DecisionTreeRegressor(max_depth=2).

Iny 1 =regr l.predict(X test) one verifies how the model predicts
test values (defined in array X_test).

This script provides the output in the form of array [1, 1, 0] with the
first two 1s defining class 4 and last 0 defining class B for the two-features
inputs [0.94, 0.5], [0.85, 0.3], [0.3, 0.3] respectively.
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. O.B. T'EpmaAH, C.H. HACP
HOBBIN METO/I OITUMAJIBHOI'O COKPALIEHUA
MHOXKECTBA IIPU3HAKOB

T'epman O.B., Hacp C.H. HoBblii MeTOA ONTHMAJIBLHOTO COKpalleHUS] MHOKeCTBa
MPH3HAKOB.

AnHoTanus. PaccMaTpuBaeTcs 3a/1aua HaXOXKAEHHS MHHUMAJILHOTO 0 Pa3Mepy MHOXKECTBa
aTpUOYTOB, HCIONB3YEMBIX IS PacIpeaeNeHNs] MHOTOMEPHBIX 00BEKTOB 0 KiaccaM, HalpHMep
Ha OCHOBE [epeBhEB pENICHHH. 3ajada MMeeT BaKHOE 3HAUCHHE IpH pa3paboTKe
BBICOKOIIPOU3BOAUTENBHBIX M TOYHBIX KIACCHU(PUIMPYIOMMX CcUCTeM. llpuBeneH KpaTkwii
CpaBHUTEIBHBI 0030p WU3BECTHBIX METONOB. 3afada CcQOpMyIHpOBaHA KaK OTHICKAHHE
MHHHUMAJIEHOTO (B3BEIICHHOT'0) TIOKPBITHS Ha pasnmdaromeit 0,1-MaTpuie, KOTopast CITyXKUT IIs
OITMCAHUsI BO3MOXKHOCTH aTpHOYTOB Pa3iessTh Mapbl 0OBEKTOB U3 pa3HbIX KiaccoB. [IpuBeneHo
OIHCAaHUE COC00a MMOCTPOCHH S pasniyarorieit MaTpribl. CHOPMyIHPOBAHEI U PEILICHEI HA OCHOBE
OOIIEro pa3pelIaoniero MPUHIUNA TPYIIIOBBIX PE3ONIONHI CIEAyIOIe BapHAHTHI 3a[adi:
OTBICKAHHE MHHHMAJIBHOTO 110 pa3Mepy MHOXKECTBA aTpHOYTOB Ha 3aJaHHOM BXOJHOM Habope
JaHHBIX; OTBICKAHHE MUHHMAJIBHOTO IO pPa3Mepy MHOXKECTBAa arpHOyTOB C MHHHMMAJIbHBIM
CyMMapHBIM BECOM aTpHOYTOB (B KaueCTBE BECOB aTPHOYTOB MOXKHO HCIIONB30BATh BEMHYHHEIL,
omnpezeNsieMble Ha OCHOBE HM3BECTHBIX AITOPHTMOB, Hampumep Ha ocHoBe Meroma RELIEF);
HAXOXKICHUE ONTHMAIBHOIO B3BELICHHOI'O HEYETKOTO HMOKPBITHS UL Cllydasi, KOrJa 3JIeMEeHTHI
pasnMyaronieil MaTpUIIbl MPUHUMAIOT 3HauUeHUs B quanasone [0,1]; onpeneneHue cTaTUCTUYECKH
OINTUMATBHOTO HMOKPBITHS pa3indalonieil MaTpuns! (HampuMep, 111 BXOJHBIX HAOOPOB JaHHBIX
Gonpiux pa3mepoB). CTaTUCTHYECKH ONTUMAJIBHBIN AITrOPHTM I03BOJSCT OFPAHUYHMTH BPEMs
PpEleHHs OIMHOMOM OT Pa3MepOB 3a/ja4H U ITIOTHOCTH €AMHUYHBIX 2JIEMEHTOB B pa3InJaronIei
MaTpHIIe U IIPU 9TOM 00ECTICUNTH OIM3KYIO K SAUHUIEC BEPOSATHOCTH OTHICKAHHS TOYHOTO PEIICHHUS.

Taxum 06pazom, mpeuraraeTcs OO IT0IX0 K OIPEIeIeHUI0 MUHIMAIIBHOTO IO Pa3Mepy
MHOJKECTBA aTPHOYTOB, YUUTBIBAIOIINNA Pa3IMYHBIE OCOOCHHOCTH B IIOCTAHOBKE 3a/1auH, 4TO
OTNUYaeT JAAHHBIA TIOAXOA OT M3BECTHBIX. VI310)KeHHE COINCPKUT MHOTOYHCICHHBIC
MILTIOCTPAINH C IEJIbI0 IPHIATh €My MaKCHMAaJIbHYIO ICHOCTb. PsIT TEOpeTHYECKHX MOJIOKEHUH,
NPUBOJMMBIX B CTaThe, OCHOBBIBACTCS HAa paHee OIYOIMKOBAHHBIX pe3yibTaTax. B
3aKJIIOUUTEIbHON YacTH MpeJCTaBIeHbl Pe3ybTaThl dKCIEPUMEHTOB, a TAKKe CBEIEHHS O
COKpAIeHH! Pa3MEPHOCTH 3aa49i O HOKPBHITUH UL OONBIINX MAaCCHBOB JaHHBIX. OTMeUaoTCs
HEKOTOpBIC IIEPCIICKTUBHBIC HANpPABICHHUS H3JIOKEHHOTO IOAXONa, BKIIOYas paboTy ¢
HETONHBIMHU U Ka4eCTBEHHBIMH JaHHBIMU, HHTETPHPOBAHUH YIPaBIIAIOIEH MOJEIU B CHCTEMY
KTacCU(UKAINY TaHHBIX.

KiioueBble cj10Ba: MHOTOMEpHBIC NaHHBIE, KIacCH(UKAIMsA, MUHAMHU3ALMSI pa3Mepa
MHOJKECTBa aTpUOyTOB, 3a/]a4a O MUHHMAJIbHOM TOKPHITHHU, IPUHIIUII IPYIIIOBBIX PE30IIOIHI
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