МОДЕЛИРОВАНИЕ РАБОЧИХ ПОВЕРХНОСТЕЙ ТРИБОТЕХНИЧЕСКИХ УЗЛОВ

А. В. Цыганков¹, И. А. Цыганкова²

¹Санкт-Петербургский морской технический университет 197253 Санкт-Петербург, ул. Лоцманская, д.,3 ²Санкт-Петербургский институт информатики и автоматизации РАН 199178 Санкт-Петербург, 14-я линия В.О.,д.39. irrina@gw2.spiiras.nw.ru

УДК 621.891

А. В. Цыганков, И. А. Цыганкова. **Моделирование рабочих поверхностей триботехнических узлов** // Труды СПИИРАН. Вып. 1, т. 2 — СПб: СПИИРАН, 2002. **Аннотация.** Представлена модель поверхности трения, в которой учитывается макро и микро геометрические отклонения от номинальных размеров. — Библ 8 назв.

UDC 621.891

A. V Tsygankov, I. A Tsygankova. **Modeling of working surfaces of units of friction** // SPIIRAS Proceedings. Issue 1, v. 2. — SPb: SPIIRAS, 2002.

Abstract. In this article the model of a surface of friction in which macro and micro geometrical deviations from the nominal sizes are taken into account is submitted. — Bibl 8 items.

Характеристики любого триботехнического узла, вне зависимости от реализуемого в конструкции режима трения в значительной мере определяются геометрией рабочих поверхностей, которые в результате механической обработки при изготовлении и изнашивания в ходе эксплуатации всегда имеют отклонения от номинальных конструкторских размеров.

Представим поверхность трения в виде суммы независимых функций

$$\xi(\mathbf{x}, \mathbf{y}) = \sum_{\iota=1}^{3} \xi_{\iota}(\mathbf{x}, \mathbf{y}) \,. \tag{1}$$

Здесь $\xi_1(x, y)$ — детерминированная функция, учитывающая макрогеометрические отклонения (неплоскостность, некруглость, нециллиндричность и т.п.) обусловленные износом, а также геометрическими и кинематическими погрешностями обрабатывающего инструмента и технологического оборудования.

 $\xi_2(x,y)$ — детерминированная периодическая компонента. Составляющая ξ_2 , которую принято называть волнистостью возникает либо в процессе черновой механической обработки и зависит в основном от жесткости системы «станок- приспособление- инструмент- деталь» и соотношения скоростей подачи инструмента, либо при обкатке шариком или роликом при финишном упрочнении.

 $\xi_1(x, y)$ — стохастическая микрогеометрическая составляющая, которую принято называть шероховатостью. Шероховатость, возникающая при обработке поверхности, является следствием неоднородности физико-механических характеристик материалов детали и обрабатывающего инструмента. В процессе эксплуатации начальная шероховатость, как правило, существенно изменятся вследствие изнашивания

В основу измерений макрогеометрических отклонений, которые регламентируются ГОСТ 24643-81, положен принцип прилегающих поверхностей. Отклонение определяется как расстояние от некоторой точки реальной поверхности до прилегающей номинальной поверхности. Измерения, как правило, проводят в точках регулярно распределенных по контролируемой поверхности. Фактически измерения проводятся в узлах сетки, шаг которой зависит от требуемой точности контроля.

Таким образом, моделирование составляющей ξ_1 сводится к интерполяции функции заданной в узлах сетки на всю область ее определения. При проведении расчетных исследований триботехнических характеристик функция $\xi_1(x, y)$ используется в разностных аналогах уравнений контактногидродинамической задачи, поэтому естественно потребовать, чтобы порядок аппроксимации $\xi_1(x, y)$ был не ниже порядка аппроксимации исходных дифференциальных уравнений. Еще одним требованием является эффективность интерполяции с алгоритмической точки зрения.

Одним из методов интерполяции сеточных функций, удовлетворяющих перечисленным требованиям, является кусочно-полиномиальная сплайн интерполяция [1, 2].

Введем сетку, в узлах которой определена функция $\xi_1(x, y)$

$$a = x_0 < x_1 < x_2 < \dots < x_i \dots < x_n = b, \quad \Delta x_i = x_i - x_{i-1},$$

$$c = y_0 < y_1 < y_2 < \dots < y_m = d, \quad \Delta y_i = y_i - y_{i-1}.$$
(2)

Определим функцию *g*(*x*, *y*), которая в каждой ячейке сетки непрерывна и представляет собой бикубический сплайн вида

$$g(x, y) = g_{i,j}(x, y) = \sum_{k,l}^{3} a_{k,l}^{(i,j)} (x_i - x)^k (y_j - y)^l.$$
(3)

Очевидно, что такой полином удовлетворяет требованиям непрерывности до производных второго порядка включительно.

Потребуем, чтобы в узлах сетки функция g(x, y) принимала заданные значения

$$g_{i,j} = \xi_1(x_i, y_j)$$
, $i = 0, 1, \dots n, j = 0, 1, \dots m.$

Граничные условия зададим в виде

$$\frac{\partial g^{2}_{0,j}}{\partial x^{2}} = o, \qquad \frac{\partial g^{2}_{n,j}}{\partial x^{2}} = o, \qquad j = 0, \dots m,$$

$$\frac{\partial g^{2}_{i,0}}{\partial y^{2}} = 0, \qquad \frac{\partial g^{2}_{i,m}}{\partial y^{2}} = 0, \qquad i = 0, 1, \dots n.$$
(4)
(5)

Если интерполируется замкнутая сеточная функция, то одно из условий (4) или (5) заменяется соответствующим условием периодичности

$$g_{0,j} = g_{n,j}$$
 либо $g_{i,0} = g_{i,m}$. (6)

Найдем вначале функцию g(x) аппроксимирующую $\xi_1(x_i, y_j)$ на линиях сетки y =const (в дальнейшем, в обозначении функции ξ_1 нижний индекс будем опускать)

$$g_i(x) = \sum_{l=0}^3 a_l^{(i)} (x_i - x)^l$$
, $i = 1, 2...n$.

Так как вторая производная g(x) непрерывна и линейна на каждом отрезке сетки $[x_{i-1}, x_i]$, то

$$g'' = m_{i-1} \frac{x_i - x}{\Delta x_i} + m_i \frac{x - x_{i-1}}{\Delta x_i} ,$$
 (7)

где $m_i = g''(x_i)$, $m_{i-1} = g''(x_{i-1})$.

Проинтегрируем выражение (7)

$$g(x) = m_{i-1} \frac{(x_i - x)^3}{6\Delta x_i} + m_i \frac{(x - x_{i-1})^3}{6\Delta x_i} + C_1 \frac{x_i - x}{\Delta x_i} + C_2 \frac{x - x_{i-1}}{\Delta x_i},$$

после определения констант интегрирования из равенств $g(x_{i-1}) = \xi_{i-1}$, $g(x_i) = \xi_i$ получим

$$g(x) = m_{i-1} \frac{(x_i - x)^3}{6\Delta x_i} + m_i \frac{(x - x_{i-1})^3}{6\Delta x_i} + (\xi_{i-1} - \frac{m_{i-1}\Delta x_i^2}{6}) \frac{x_i - x}{\Delta x_i} + (\xi_i - \frac{m_i \Delta x_i^2}{6}) \frac{x - x_{i-1}}{\Delta x_i}, \quad (8)$$

$$g'(x) = -m_{i-1}\frac{(x_i - x)^2}{2\Delta x_i} + m_i\frac{(x - x_{i-1})^2}{3\Delta x_i} + \frac{\xi_i - \xi_{i-1}}{\Delta x_i} - \frac{(m_i - m_{i-1})\Delta x_i}{6}.$$
 (9)

Так как функция (9) непрерывна во всех узловых точках, то приравнивая производные, вычисленные на смежных участках сетки Δx_i и Δx_{i-1} , получим

$$\frac{\Delta x_i}{6}m_{i-1} + \frac{\Delta x_i}{3}m_i + \frac{\xi_i - \xi_{i-1}}{\Delta x_i} = -\frac{\Delta x_{i-1}}{3}m_i - \frac{\Delta x_{i+1}}{6}m_{i+1} + \frac{\xi_{i+1} - \xi_i}{\Delta x_{i+1}}.$$
(10)

Дополнив уравнения (10) равенствами

$$m_n = 0$$
 M $m_0 = 0$, (11)

которые соответствуют граничным условиям (5), получим систему линейных ал-гебраических уравнений

$$[A]\overline{m} = \overline{b} . \tag{12}$$

Квадратная матрица [A] и векторы \vec{m} и \vec{b} , размером n-1, имеют вид

$$\begin{bmatrix} A \end{bmatrix}_{n-1} = \begin{vmatrix} \frac{\Delta x_1 + \Delta x_2}{3} & \frac{\Delta x_2}{6} & 0 & \cdots & 0 \\ \frac{\Delta x_2}{6} & \frac{\Delta x_2 + \Delta x_3}{3} & \frac{\Delta x_3}{6} & 0 & \cdots & 0 \\ 0 & \frac{\Delta x_3}{6} & \frac{\Delta x_3 + \Delta x_4}{3} & \frac{\Delta x_4}{6} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \frac{\Delta x_{n-1}}{6} & \frac{\Delta x_{n-1} + \Delta x_n}{3} \end{vmatrix}$$

$$\vec{b} = \begin{vmatrix} \frac{\xi_2 - \xi_1}{\Delta x_2} - \frac{\xi_1 - \xi_0}{\Delta x_1} \\ \frac{\xi_3 - \xi_2}{\Delta x_3} - \frac{\xi_2 - \xi_2}{\Delta x_2} \\ \dots \\ \frac{\xi_{n+1} - \xi_n}{\Delta x_n} - \frac{\xi_n - \xi_{n-1}}{\Delta x_{n-1}} \end{vmatrix}, \qquad \vec{m} = \begin{vmatrix} m_1 \\ m_2 \\ \dots \\ m_n \end{vmatrix}$$

.

Матрица [*A*] имеет строгую трех диагональную форму. Для решения таких систем эффективен метод прямой прогонки [3]. На первом этапе по рекуррентным формулам формируется вектор прогоночных коэффициентов $\vec{\alpha}$ и $\vec{\beta}$.

$$\alpha_{i} = \frac{A_{i,i+1}}{A_{i,i} - \alpha_{i-1}A_{i,i-1}}, \qquad \alpha_{1} = \frac{A_{1,2}}{A_{1,1}}, \qquad i = 2,3...(n-2), \qquad (13)$$

$$\beta_{i} = \frac{b_{i} - \beta_{i-1} A_{i,i}}{A_{i,i} - \alpha_{i-1} A_{i,i-1}}, \qquad \beta_{1} = \frac{b_{1}}{A_{1,1}}, \qquad i = 2, 3...(n-1).$$
(14)

На втором этапе вычисляются компоненты искомого вектора *m*

$$m_{i-1} = \beta_{i-1} - \alpha_{i-1}m_i$$
, $m_{n-1} = \beta_{n-1}$, $i = (n-2), (n-3), \dots, 1$.

Если аппроксимируется периодическая функция, то вместо равенств (11) система должна быть дополнена условием $m_0 = m_n$. В этом случае матрица [*A*] размером п теряет строгую диагональную форму

$$\begin{bmatrix} A \end{bmatrix}_{n} = \begin{vmatrix} \frac{\Delta x_{1} + \Delta x_{2}}{3} & \frac{\Delta x_{2}}{6} & 0 & \cdots & \cdots & \frac{\Delta x_{1}}{6} \\ \frac{\Delta x_{2}}{6} & \frac{\Delta x_{2} + \Delta x_{3}}{3} & \frac{\Delta x_{3}}{6} & 0 & \cdots & 0 \\ 0 & \frac{\Delta x_{2}}{6} & \frac{\Delta x_{3} + \Delta x_{3}}{3} & \frac{\Delta x_{3}}{6} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{\Delta x_{1}}{6} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{\Delta x_{1}}{6} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{\Delta x_{2}}{6} - \frac{\xi_{1} - \xi_{n}}{\Delta x_{2}} & \frac{\xi_{2} - \xi_{1}}{\Delta x_{2}} \\ \frac{\xi_{3} - \xi_{2}}{\Delta x_{3}} - \frac{\xi_{2} - \xi_{1}}{\Delta x_{2}} \\ \frac{\xi_{1} - \xi_{n}}{\Delta x_{1}} - \frac{\xi_{n} - \xi_{n-1}}{\Delta x_{n}} \end{vmatrix}, \qquad \vec{m} = \begin{vmatrix} m_{1} \\ m_{2} \\ \cdots \\ m_{n} \end{vmatrix}.$$
(15)

Для решения систем с такой структурой матрицы может быть применен модифицированный метод прогонки. На первом этапе матрица (15) приводится к верхнему треугольному виду, т.е. во всех строках, кроме последней, приводятся к нулю все элементы, расположенные слева от главной диагонали и матрица принимает вид

$$[A]_{n} = \begin{bmatrix} 1 & \alpha_{1} & 0 & \cdots & \cdots & 0 & \gamma_{1} \\ 0 & 1 & \alpha_{2} & 0 & \cdots & 0 & \gamma_{2} \\ 0 & \cdots & 1 & \alpha_{3} & 0 & \cdots & \gamma_{3} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 & \alpha_{n-2} & \gamma_{n-2} \\ 0 & \cdots & \cdots & 0 & 1 & \alpha_{n-1} + \gamma_{n-1} \\ \alpha_{n} & 0 & \cdots & \cdots & 0 & 1 \end{bmatrix}.$$
(16)

Коэффициенты матрицы [A] и вектора $\vec{\beta}$ определяются по формулам

$$\alpha_{i} = \frac{A_{i,i+1}}{C_{i}}, \qquad \beta_{i} = \frac{b_{i} - \beta_{i-1}A_{i,i-1}}{C_{i}}, \qquad \gamma_{i} = \frac{-\gamma_{i-1}A_{i,i-1}}{C_{i}}, \qquad (17)$$

$$C_{i} = A_{i,i} - \alpha_{i-1}A_{i,i-1}, \qquad i = 2,3, \dots (n-1),$$

Труды СПИИРАН. 2002. Вып. 1. Т. 2. ISSN 2078-9181 (печ.), ISSN 2078-9599 (онлайн) SPIIRAS Proceedings. 2002. Issue 1. V. 2. ISSN 2078-9181 (print), ISSN 2078-9599 (online) www.proceedings.spiiras.nw.ru $\alpha_{1} = \frac{A_{1,2}}{A_{1,1}}, \qquad \beta_{1} = \frac{b_{1}}{A_{1,1}}, \qquad \gamma_{1} = \frac{-A_{1,n}}{A_{1,1}},$ $\alpha_{n} = \frac{A_{n,1}}{C_{n}}, \qquad \beta_{n} = \frac{b_{n}}{C_{n}}, \qquad C_{n} = -A_{n,n-1}(\alpha_{n-1} + \gamma_{n-1}) + A_{n,n}.$

Затем из последней строки исключается коэффициент α_n и вычисляется искомое m_n .

$$m_{n} = \frac{\beta_{n}^{*}}{\gamma_{n}^{*}}, \quad \beta_{n}^{*} = \beta_{n} + \sum_{i=1}^{n-1} k_{i} \beta_{i}, \qquad \gamma_{n}^{*} = 1 + k_{n-1} \alpha_{n-1} + \sum_{i=1}^{n-1} k_{i} \gamma_{i},$$

$$k_{1} = -\alpha_{n}, \qquad k_{i+1} = -k_{i} \alpha_{i}, \qquad i = 1, 2 \dots (n-2).$$

Остальные элементы вектора m определяются по рекуррентной формуле $m_{i-1} = \beta_{i-1} - \alpha_{i-1}m_i + \gamma_i m_n$, $i = n, (n-1), (n-2), \dots 2$.

Аналогичным образом может быть определена функция g(y), аппроксимирующая $\xi(x, y)$ на линиях сетки x = const.

Найдем теперь значение функции g(x, y) в точке [x, y] лежащей вне линий сетки. Пусть $x_{i-1} < x < x_i$ и $y_{j-1} < y < y_j$. Предварительно решим m+1 одномерных задач на линиях сетки $y = y_j$ j = 0,1,...,m и найдем значения $g^{(x)}(x_i, y_j)$ в узлах сетки. Затем, решив n+1 задач на линиях $x = x_i$ i = 0,1,...,n, найдем $g^{(y)}(x_i, y_j)$ также во всех узлах сетки. Так как $g^{(x)}$ и $g^{(y)}$ вторые производные кубических сплайнов, то значения g(x, y) в точках $[x_i, y]$ и $[x_{i-1}, y]$ вычислим по формулам аналогичным (8)

$$g(x_{i-1}, y) = g_{i-1,j-1}^{(y)} \frac{(y_j - y)^3}{6\Delta y_j} + g_{i-1,j}^{(y)} \frac{(y - y_{j-1})^3}{6\Delta y_j} + (6\xi_{i-1,j-1} - g_{i-1,j-1}^{(y)}\Delta y_j^2) \frac{(y_j - y)}{6\Delta y_j} + (6\xi_{i-1,j} - g_{i-1,j}^{(y)}\Delta y_j^2) \frac{(y - y_{j-1})}{6\Delta y_j},$$
(18)

$$g(x_{i}, y) = g_{i,j-1}^{(y)} \frac{(y_{j} - y)^{3}}{6\Delta y_{j}} + g_{i,j}^{(y)} \frac{(y - y_{j-1})^{3}}{6\Delta y_{j}} + (6\xi_{i,j-1} - g_{i,j-1}^{(y)}\Delta y_{j}^{2}) \frac{(y_{j} - y)}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (6\xi_{i,j} - g_{i,j}^{(y)}\Delta y_{j}^{2}) \frac{(y - y_{j-1})}{6\Delta y_{j}} + (10)$$

Решим m+1 одномерных задач на линиях $y = y_j$, принимая в качестве функции значения $g^{(y)}(x_i, y_j)$, которые определены выше, в результате найдем $g^{(x)}(x_{i-1}, y)$ и $g^{(x)}(x_i, y)$. Окончательно значения g(x, y) вычислим по формуле

$$g(x,y) = g^{(x)}(x_{i-1},y)\frac{(x_i - x)^3}{6\Delta x_i} + g^{(x)}(x_i,y)\frac{(x - x_{i-1})^3}{6\Delta x_i} + [6g(x_{i-1},y) - g^{(x)}(x_{i-1},y)\Delta x_i^2]\frac{(x_i - x)}{6\Delta x_i} + [6g(x_i,y) - g^{(x)}(x_i,y)\Delta x_i^2]\frac{(x - x_{i-1})}{6\Delta x_i}.$$
(20)

Таким образом, для определения g(x, y) в произвольной точке сетки необходимо предварительно решить 2(m+1) + (n+1) линейных алгебраических систем типа (12), а затем по формулам (18)-(20) найти искомую величину. Отметим, что можно изменить порядок проведения расчетов, тогда необходимо будет решать систему линейных уравнений 2(n+1) + (m+1) раз. Приведенный алгоритм целесообразно использовать для вычисления коэффициентов в каждой ячейке сетки. В этом случае предварительно формируется массив коэффициентов размером 4mn, а искомое значение g(x, y) вычисляется сразу по формуле (20).

Составляющая $\xi_2(x, y)$ представляет собой детерминированную периодическую функцию, амплитуда и период которой определяются по результатам обработки профилограмм. Существенным является то обстоятельство, что шаг волнистости значительно больше шага шероховатости поверхности и, следовательно, длина профилограмм должна быть также больше базовой длины профилограммы на которой измеряется шероховатость. Такие «протяженные» профилограммы принято называть волнограммами или периодограммами.

Для определенности примем, что волнистость направлена по оси x, тогда $\xi_2(x, y)$ можно представить в виде $\xi_2(x, y) = \xi(x) = A_1 \cos \varpi x + A_2 \sin \varpi x$.

Амплитуды гармоник A_1 и A_2 могут быть определены в результате обработки профилограмм. В качестве оценок A_1 и A_2 примем величины, обеспечивающие минимум функционала

$$\Phi(A_1, A_2) = \int_0^L [\xi(x) - A_1 \cos \omega x - A_2 \sin \omega x]^2 dx.$$

Здесь L длина профилограммы. Условия экстремума функционала

$$\frac{\partial \Phi(A_1, A_2)}{\partial A_1} = 0 \quad , \qquad \frac{\partial \Phi(A_1, A_2)}{\partial A_2} = 0 \; .$$

Torga

$$a_{11}A_1 + a_{12}A_2 = b_1$$

$$a_{21}A_1 + a_{22}A_2 = b_2$$

3gecb

$$a_{11} = \int_0^L \cos^2 \omega x dx \; , \qquad a_{22} = \int_0^L \sin^2 \omega x dx \; , \qquad a_{12} = a_{21} = \int_0^L \cos \omega x \sin \omega x dx \; ,$$

$$b_1 = \int_0^L \xi(x) \cos \omega x dx \; , \qquad b_2 = \int_0^L \xi(x) \sin \omega x dx \; .$$

Так как профилограмма может быть выбрана любой длины, то можно принять

$$L = \frac{2\pi}{\omega}k$$
, тогда $a_{12} = 0$, $a_{11} = a_{22} = 0.5$.

Окончательно имеем $A_1 = \int_0^L \xi(x) \cos \omega x dx$, $A_2 = \int_0^L \xi(x) \sin \omega x dx$.

Шероховатость поверхностей согласно ГОСТ 246443-81 оценивается по результатам обработки профилограмм, которые можно рассматривать как сечения стохастической поверхности $\xi_3(x, y)$ нормальной плоскостью. Будем считать, что профилограмма это функция $\xi(t)$. Очевидно, что ее ординаты распределены случайным образом. Конкретная реализация функции зависит от большого случайных факторов имеющих различные функции распределения случайных параметров. Согласно центральной предельной теореме процесс, являющийся результатом взаимодействия многих факторов, имеет многомерные распределения, близкие к нормальному (гауссовскому). Это положение подтверждается результатами обработки профилограмм, снятых с поверхностей различных деталей. В работах [4, 5] показано, что в большинстве случаев,

вне зависимости от технологии обработки и материала детали, профилограммы могут рассматриваться как реализации гауссовского стационарного в широком смысле процесса с эргодическими свойствами. То есть, при достаточной протяженности процесса, вне зависимости от выбора начальной точки все статические характеристики могут быть определены по результатам обработки одной реализации. Такие процессы статистически однозначно определяются математическим ожиданием m_{ε} и автокорреляционной функцией $K_{\varepsilon}(\tau)$, кото-

рая зависит только от разности аргументов $\tau = t_2 - t_1$.

В дальнейшем при моделировании шероховатости будем рассматривать случайные функции $\xi(t)$ с m_{ξ} =0 и дисперсией $\sigma_{\xi}^2 = K_{\xi}(0) = 1$. Функции с другими параметрами могут быть получены как результат преобразования $\xi(t) = m_{\xi} + \sigma_{\xi}^2 \xi(t).$ (21)

В соответствии с ГОСТ шероховатость нормируется параметрами R_a и R_z

$$R_{a} = \frac{1}{L} \int_{0}^{L} |\xi(t)| dt , \qquad \qquad R_{z} = \frac{1}{5} \left(\sum_{1}^{5} h_{i \max} - \sum_{1}^{5} h_{i \min} \right) .$$
(22)

Здесь L — базовая длина профилограммы, $h_{i \max}$ и $h_{i \min}$ — пять высших и низших точек профилограммы, измеренных от средней линии в пределах базовой длины. Параметры шероховатости по данным [4] для различных классов чистоты поверхности приведены в таблице 1.

Рассмотрим связь между R_a и σ_{ξ} . Введем функцию

$$\xi_{\xi}^{*} = \begin{cases} 1....npu.\xi(t) > h \\ 0 \end{cases}$$
(23)

Найдем длину линии $l = \sum l_i$, которая является суммой длин отрезков пересечения функции $\xi(t)$ и h = const

$$l(h) = \int_{0}^{L} \xi_{\xi}^{*}(t) dt$$
, с другой стороны $l(h) = \int_{0}^{L} P\{\xi(t) \mid > h \} dt$.

Подынтегральное выражение представляет собой вероятность того, что ордината функции $\xi(t)$ больше h. C учетом того, что $\xi(t)$ - гауссовский процесс

$$l(h) = 2L \left[1 - \Phi \left(\frac{h}{\sigma} \right) \right].$$

Здесь $\Phi(x) = \frac{1}{2\pi} \int_{-\infty}^{x} \exp(-\frac{x^2}{2}) dx$ — функция вероятности нормального рас-

пределения. Выразим K_a через $\iota(n)$

$$\begin{split} R_{a} &= \frac{1}{L} \int_{0}^{\infty} l(h) dh = 2 \int_{0}^{\infty} \left[1 - \Phi\left(\frac{h}{\sigma}\right) \right] dh \, . \\ \text{Так как } \int_{x}^{\infty} \left[1 - \Phi\left(\frac{h}{\sigma}\right) \right] dx = \frac{\sigma}{\sqrt{2\pi}} \exp(-\frac{x^{2}}{2\sigma^{2}}) - x \left[1 - \Phi\left(\frac{x}{\sigma}\right) \right], \\ \text{то } R_{a} &= \sigma \sqrt{\frac{2}{\pi}} \, . \end{split}$$

Очевидно, что параметр R_a не является исчерпывающей характеристикой профилограммы, связь между ординатами одного случайного процесса в мо*t*₁ и *t*₂ определяется корреляционной функцией менты времени

$$K(\tau) = \frac{1}{L} \int_{0}^{L+\tau} \xi(t)\xi(t+\tau) \cdot dt .$$
 (24)

Так как $\xi(t)$ — гауссовский процесс с нулевым математическим ожиданием и единичной дисперсией, то $K(\tau)$ обладает следующими свойствами $K(\tau) < K(0) = 1$

$$\int_{-\infty}^{\infty} |K(\tau)| \cdot d\tau < \infty$$

Аппроксимируем (4) функцией $K_{\xi}(\tau)$, которая имеет указанные своиства $K_{\xi}(\tau) = \exp(-\alpha | \tau |)$. (25)

Коэффициент затухания α определим через интервал корреляции R_{τ} . Под R_{τ} будем понимать интервал τ , при котором $K(\tau)$ принимает заданное пороговое значение, обычно $K(R_{\tau}) = 0.05$, тогда

$$\alpha = \frac{\ln K(R_{\tau})}{R_{\tau}} \approx \frac{3}{R_{\tau}} \quad .$$
(26)

Корреляционная функция может быть представлена в виде суммы бесконечного числа гармоник с непрерывно меняющейся частотой u, иначе говоря, функция может быть разложена в непрерывный спектр. Спектральная плотность $S_{\xi}(u)$ и корреляционная функция $K_{\xi}(\tau)$ связаны преобразованием Фурье.

$$S_{\xi}(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} K_{\xi}(\tau) \ e^{-iu\tau} d\tau \,.$$
(27)

Для функции (25) спектральная плотность имеет вид

$$S_{\xi}(u) = \frac{\alpha}{\pi(\alpha^2 + u^2)}.$$
(28)

Двухмерную шероховатую поверхность будем рассматривать как случайное поле, статистические характеристики которого определяются в результате обработки прфилограмм. Профилограмма, как уже отмечалось выше, может рассматриваться как случайная функция, являющаяся сечением случайного поля нормальной плоскостью. Если статистические характеристики сечения не зависят от ориентации секущей плоскости, то такое поле является однородным изотропным, и его характеристики с учетом эргодических свойств могут быть определены по единственной реализации. Шероховатость реальных поверхностей, как правило, анизотропная. Типичной является ситуация, при которой R_a

— величина постоянная, а R_r меняется в зависимости от ориентации секущей плоскости. Обычно параметры шероховатости контролируются в двух перпендикулярных направлениях совпадающих с направлениями продольной и поперечной подачи режущего инструмента. Для таких поверхностей корреляционная функция может быть представлена в виде

$$K(x) = K_1(x_1)K_2(x_2).$$
⁽²⁹⁾

Здесь $K_1(x_1)$ и $K_2(x_2)$ - независимые корреляционные функции по осям x_1 и x_2 соответственно. В этом случае и частотные спектры поля по осям x_1 и x_2 также имеют независимые функции плотности распределения, т.е. $S(u) = S_1(u)S_2(u)$,

 $\int_{-\infty}^{\infty} S_i(u_i) \, du_i = 1, \qquad i = 1, 2.$

Таким образом, для моделирования шероховатой поверхности, которая рассматривается как неизотропное однородное гауссовское поле, необходимо задать параметр шероховатости R_a или R_z и интервалы корреляции $R_\tau(x_1)$ и $R_2(x_2)$. Отметим, что в качестве корреляционной может быть выбрана любая функция, обладающая свойствами (25).

Цифровое моделирование случайных полей рассматривается в работах [6,7]. Одной из моделей, позволяющих построить легко реализуемый алгоритм эффективный с точки зрения затрат ресурсов ЭВМ, является непараметрическая модель скалярного поля [6].

$$\zeta(X,\Omega) = m_{\xi} + \sigma_{\xi} z_{\zeta} \left\{ \cos \left[V^{T} (X - x_{0}) + \sin (V^{T} (X - X_{0})) \right] \right\}.$$
(30)

Здесь $X = (x_1, x_2)$ — вектор координат моделируемого поля, x_0 — начальный детерминированный аргумент поля, $\Omega = (z_{\zeta}, V)$ — случайный параметр поля, $V = (v_1, v_2)$ — вектор пространственных частот поля, компоненты которого имеют плотности распределения $S_1(u_1)$ и $S_2(u_2)$ соответственно, z_{ζ} — случайная величина с нулевым математическим ожиданием и единичной дисперсией.

Модель нормированного поля ($m_{\xi} = 0$, $\sigma_{\xi} = 1$) представим в виде

$$\zeta(X,\Omega) = \sqrt{2} \ z_{\xi} \sin \left[V^{T} (X + x_{0}) + \frac{\pi}{4} \right].$$
(31)

Поле (31) адекватно моделируемому полю $\xi(x)$ на уровне первых двух моментов и корреляционной функции. В работе [6] показано, что для гауссовских полей, для того чтобы обеспечить адекватность до первых четырех моментов, случайная величина z_{c} должна иметь плотность распределения

$$\varphi_{z_{\zeta}}(\lambda) = |\lambda| e^{-\lambda^2}, \qquad \lambda = [-\infty, +\infty].$$
 (32)

Модули компонентов вектора *V* являются независимыми случайными величинами с известными функциями распределения (28).

Таким образом, модель (31) сводится к определению независимых случайных величин z_{ζ}, v_1, v_2 , для которых известны функции распределения. Моделирование этих величин проводится методом обращения. Пусть ξ — случайная величина, а $\Phi(y) = \int_{0}^{y} \varphi(y) dx$ функция ее распределения, тогда модели-

рование ξ осуществляется преобразованием $\xi = \phi^{-1}(\gamma)$.

где $\gamma - Rav(0,1)$ — величина, равномерно распределенная в интервале [0,1]. Выражение (33) означает решение уравнения $\phi(\xi) = \gamma$.

(33)

Для функции (28) моделирующий алгоритм имеет вид

$$V_i = \alpha_i tg\left[\pi\left(\gamma - \frac{1}{2}\right)\right], \qquad i = 1, 2,$$
(34)

для функции (12)

$$z = \pm \sqrt{-\ln \gamma} \quad . \tag{35}$$

Конечномерные распределения ординат поля (31) отличаются от нормального закона. Если рассматривать это поле как пространственную гармонику, то поле

$$\eta_N(X) = \frac{1}{\sqrt{N}} \sum_{i=1}^N \zeta(X, \Omega)$$
(36)

является суммой N гармоник и согласно центральной предельной теореме все конечномерные распределения такого поля при $N \to \infty$ асимптотически нормальны. Фактическое значение N при моделировании определяется по критерию согласия $n\omega^2$ (критерий Смирнова — Колмогорова) [8]. Показатель согласия вычисляется по формуле

$$n\omega^{2} = \frac{1}{12n} + \sum_{i=1}^{n} \left[\phi(x_{i}) - \frac{2i-1}{2n} \right]^{2}.$$
 (37)

Здесь $\phi(x_i)$ - интеграл вероятности нормального распределения для аргумента поля x_i , n - число аргументов поля, так как моделирование проводится на сетке то удобно принять в качестве n число узлов сетки. Если показатель согласия (37) менее 0.4614, то распределения ординат поля является нормальным с вероятностью не менее 0.95. Если это условие не выполняется, то в модели (36) следует увеличить число пространственных гармоник.

Класс шероховатости	<i>R_a</i> мкм		Lмм
товерхности	90.40	220 160	
1	40.00	320-100	0.0
2	40-20	160-80	8,0
3	20-10	80-40	
4	10-5,0	40-20	2,5
5	5,0-2,5	20-10	
6	2,5-1,25	!0-6,3	0,8
7	1,25-0,63	6,3-3,2	
8	0,63-0,32	3,2-1,6	
9	0,32-0,16	1,6-0,8	
10	0,16-0,08	0,8-0,4	0,25
11	0,08-0,04	0,4-0,2	
12	0,04-0,02	0,2-0,1	
13	0,02-0,01	0,1-0,05	0,08
14	<0,01	0,05-0,025	

Таблица 1. Параметры шероховатости.

Литература

- [1] Марчук Г. И. Методы вычислительной математики. М.: Наука, 1989.
- [2] Завьялов Ю. С. и др. Методы сплайн функций. М.: Наука, 1980.
- [3] Самарский А. А. Введение в численные методы. М.: Наука, 1982.
- [4] Хусу А.. П. и др. Шероховатость поверхностей. М.: Наука, 1975.
- [5] Карагельский И. В. Узлы трения машин. М.: Машиностроение, 1984
- [6] Шалыгин А. С., Палагин Ю. П. Прикладные методы статистического моделирования. Л.: Машиностроение, 1984
- [7] Быков В. В. Цифровое моделирование в статистической радиотехнике. М.: Советское радио, 1971
- [8] Айвазян С. А. и др. Прикладная статистика. М.: Финансы и статистика, 1983